
ETMS System Design Document
Version 6.0

25-1

Section 25

Flight Database Function

The Flight Database Processes (FDPs) perform the following functions:

• Maintain an entry for each flight (active, proposed, or completed within the past
12 hours) in the National Airspace System (NAS)

• Update the flight records when any new data arrives about a flight

• Distribute updates about each aircraft's current situation to other functions within
the ETMS

Processing Overview
Figure 25-1 illustrates the following major tasks the FDPs perform:

(1) Match any flight update message to the correct entry in the database, or create a
new entry if no match exists.

(2) If the message contains field 10 (route) information, update the list of route events
in the database.

(3) If the message contains flight position data, record this.

(4) Use all available information (current position, route, high altitude winds, aircraft
dynamics, estimated ground time) to predict the future behavior of the flight
(where it will be at any specific time).

(5) If the message modified the current status of the flight, or changed our predictions
about the future behavior of the flight, distribute information about the changes to
specific places, including

(a) Any information about flight updates or route changes is forwarded to the
FTM processes.

(b) Any information about changes involving route events (which fixes or
sectors a flight will fly over/through) or route event times is forwarded to the
TDB processes.

(c) Any updates are forwarded to a slave FDB process if one exists.

(6) Periodically flush data on old flights (those that landed more than 12 hours ago) to
archival processes.

(7) Provide information about flights in the database to other processes on request.

ETMS System Design Document
Version 6.0

25-2

FDB
Processes

Parser

DAS

Slave
FDBEDCT

TDB

FTM

V4
Routes

Flight Data
Base

Winds Data
Base

Aircraft
Dynamics

Raw
winds
dat.

Parsed NAS,
schedule, or
EDCT mes-
sages

Data
Requests

V4 Route Data

Flight Updates

Route Events

Controlled Flight
Updates

Gridwinds Data
Aircraft Dynamics
Data

Flight Updates

Flight Data

AF Data

Figure 25-1. Simplified Data Flow involving the Flight Database Processes

The following pages describe several significant design issues involved in the overall conception
of the FDPs.

Design Issue 1: Unique Flight Indices/Master–Slave
One of the ETMS system goals is to provide a unique index to identify flights across strings.
Since some sites are normally receiving data from A string, and others from B string, having the
same flight index on both strings allows sites to switch their source of data at will. The method
chosen to implement unique flight indices is generalized as

• One of the strings is running as the Master string. The Master is responsible for
processing all incoming flight messages, deciding which entry in the database is
to be updated, and preparing an off-line picture of what the database entry should
look like after the message data has been incorporated. Once the above steps
have been completed, the Master plugs the updated picture into its database, and
sends a copy of the picture to the Slave FDB.

ETMS System Design Document
Version 6.0

25-3

• The other string is running as the Slave string. The only messages it usually
receives are the updated database entry pictures sent over by the Master string,
and all it has to do is plug them into the correct slot in its database.

Following these two steps ensures that the database entries for any particular flight reside in the
same database slot on the different strings.

Design Issue 2: Database Recoveries
Another of the goals of ETMS is that databases will be recoverable in case of catastrophic failure
of one database. To implement this, the following types of recovery/fill-in actions are enabled:

(1) A string's flight database can be recovered from another string if those two strings
had been working in a Master/Slave relationship.

(2) A site's FTM database can be recovered from a hubsite FDP.

(3) Holes in a site's FTM database can be filled from a hubsite FTP to avoid showing
partial data in flight lists.

Design Issue 3: Multiple Processes Make Up the FDPs
In order to ensure efficient processing of data, the multiple functions of the FDPs have been split
into several processes along these general lines of responsibility:

(1) Flight update (NAS) message processing, flight modelling, and database
maintenance are handled by the fdb_manager process. This process also prepares
messages to be dispatched to other ETMS functions, but it relies on various other
processes to handle the actual communication duties.

(2) Communication processes that take data prepared by fdb_manager and distribute
it to other functions:

(a) FDB_receiver handles buffering messages coming into the fdb_manager
process.

(b) tdb_relay stores and forwards data about route events for each flight to the
Traffic Demands Processor.

(c) edct_relay stores and forwards data concerning flights that have ground
delays associated with them to the EDCT process.

(d) das_relay stores and forwards data about flights that are being flushed from
the database to an archival process.

(e) cross_string_relay stores and forwards data to a slave FDB_manager
process.

(f) feedback_relay stores and forwards messages concerning certain AF
messages back to the parser process.

ETMS System Design Document
Version 6.0

25-4

(g) route_relay prepares and ships version 4.2 route messages to nas.dist to
support the ATA feed.

(h) fdb_dist forwards flight transactions to any FTM processes that are registered
for services.

(3) Requests for specific information about flights currently in the database are
handled by two processes: fdb_router and fdb_data_server.

(4) The FDB_recovery process is invoked whenever a cross-string FDB_manager
recovery is performed.

(5) The FTM_recovery process is invoked whenever an FTM process has requested a
database recovery.

The data flow among these processes is depicted in Figure 25-2.

ETMS System Design Document
Version 6.0

25-5

GTP

FTM Recovery
25.13

DAS Relay
25.5

TDB Relay
25.3

FDB Dist
Relay

25.2

FDB Dist
25.11

EDCT Relay
25.6

RT Relay
25.10

Cross-String
Relay

25.7

FDB
Receiver

25.1

Feedback
Relay 25.4

fdb_manager
25.14

FDB Data Server
25.9

FDB Router
25.8

FDB Recovery
25.12

CLIST Requests (TDB)
Flight Requests (EDCT)
Fill-in Requests (FTM)
Full Recovery Requests (FTM)
Status Requests (User)

ARTCC
CodesElement

Names Aircraft
Dynamics

Flight Data
Base

Communication-
Messages

Status Response
CLIST Reports
Flight Reports

Cross-string
Recovery
Messages

Fill- in and Full
Recovery
Messages

Flight Update
Transactions

to FTMs

ARTCC
CodesAircraft Dynam-

ics Data
Old and New
Flight Data

Element
Names

Ground Time Data

Output Queue
Output Queue

Input Queue

Output Queue

Output Queue

Output Queue

Output Queue

Cross-string
Transactions

V4 Routes

EDCT
Transactions

DAS
Flight
Messages

TDB
Transactions

Parsed NAS, OMP,
Schedule, or EDCT
Messages

Parsed NAS, OMP,
Schedule, or EDCT
Messages

Flight Plan Amend-
ment Feedback
Messages

Output Queue

Figure 25-2. Data Flow of the Flight Database Processor

ETMS System Design Document
Version 6.0

25-6

25.1 The FDB Receiver Process

Purpose
The purpose of the FDB Receiver is to enqueue the flight state data and route data from parsed
NAS, OMP, flight schedule, and EDCT messages for retrieval by the fdb_manager process. The
FDB Receiver buffers the messages in a manner that isolates the fdb_manager process from any
I/O processing, thus allowing the fdb_manager process to process data from the Parser
asynchronously and ensuring that all messages are processed in the order in which they are
received.

Execution Control
The fdb_manager process starts the FDB Receiver as a child process. This data driven process
runs continuously; if it fails, the fdb_manager parent process restarts it using the old queue so
that a minimum amount of data are lost. Non-fatal errors cause an error message to appear in the
receiver window of the ETMS operator's node.

Input
The FDB Receiver input consists of flight state data and route data which the Parser has
extracted from NAS, flight schedule data, and EDCT and OMP messages.

Output
The FDB Receiver output is identical to its input.

Processing
The FDB Receiver's processing varies depending on the instance of the FDP. In one case, the
FDB Receiver creates the socket to which the Parser and EDCT Server connect, and it allocates
memory for use as a queue. As messages arrive at the socket, the FDB Receiver puts them in the
queue for use by the fdb_manager process when it's ready. See Section 23.2 for a more detailed
description of receiver processes.

Error Conditions and Handling
In general, if the files necessary for creating the queues are locked, FDB Receiver unlocks them
before creating or opening them.

25.2 The FDB Dist Relay Process

Purpose
The FDB Dist Relay process buffers and relays route information generated by the fdb_manager
process to the FDB Distributor. The FDB Dist Relay process does not change the data; it merely
ensures that all data destined for the FDB Distributor make it there.

ETMS System Design Document
Version 6.0

25-7

Execution Control
The fdb_manager process starts the FDB Dist Relay, a continuously running, data-driven
process. If the FDB Dist Relay fails, the fdb_manager parent process restarts it using the old
queue so that minimum data loss occurs. See Section 33 for more information on restarting
processes.

Input

The FDB Dist Relay receives packets of route information created by the fdb_manager process.

Output
The FDB Dist Relay output is identical to its input.

Processing
The FDB Dist Relay opens a channel to the socket controlled by the FDB Distributor. It then
continuously dequeues messages and writes them to the channel. See Section 23.2 for a complete
description of relay processes.

Error Conditions and Handling
If the FDB Dist Relay loses contact with the FDB Distributor socket, the FDB Dist Relay will
attempt to reconnect to the socket. Non-fatal errors cause an error message to appear in the FDB
Dist Relay window.

25.3 The TDB Relay Process

Purpose
The TDB Relay process buffers and relays update transactions generated by the fdb_manager
process to the Traffic Demands Database Processor. The TDB Relay does not change the data; it
ensures that all data headed for the Traffic Demands Database Processor reach their destination.

Execution Control
The fdb_manager process starts the TDB Relay, a continuous, data-driven process. If the TDB
Relay fails, the fdb_manager parent process restarts it using the old queue so that a minimum
number of data are lost. See Section 33 for more information on restarting processes.

Input
The TDB Relay receives the transactions that are used by the Traffic Demands Database
Processor to update the TDB.

Output
The TDB Relay output is identical to its input.

ETMS System Design Document
Version 6.0

25-8

Processing
The TDB Relay opens a channel to the socket controlled by the Traffic Demands Database
Processor. It then continuously dequeues messages and writes them to the channel. Non-fatal
errors cause an error message to appear in the TDB Relay window.

Error Conditions and Handling
If the TDB Relay loses contact with the TDB's receiver socket, the TDB Relay will attempt to
reconnect to the socket.

25.4 The Feedback Relay Process

Purpose
The Feedback Relay process buffers and relays feedback (FA) messages generated by the
fdb_manager process to the Parser function. The Feedback Relay does not change the data; it
ensures that all data headed for the Parser function reach their destination.

Execution Control
The fdb_manager process starts the Feedback Relay, a continuous, data-driven process. If the
Feedback Relay fails, the fdb_manager parent process restarts it using the old queue so that a
minimum number of data are lost. See Section 23.2 for more information on restarting processes.

Input
The Feedback Relay receives transactions generated by the FDB and contains information
merged from AF NAS messages and flight database records.

Output

The Feedback Relay output is identical to its input.

Processing
The Feedback Relay opens a channel to the socket controlled by the Parser function. It then
continuously dequeues messages and writes them to the channel. See Section 23.2 for a complete
description of relay processes.

Error Conditions and Handling
If the Feedback Relay loses contact with the Parser's feedback socket, the Feedback Relay will
attempt to reconnect to the socket. Non-fatal errors cause an error message to appear in the
Feedback Relay window.

ETMS System Design Document
Version 6.0

25-9

25.5 The DAS Relay Process

Purpose
The DAS Relay process buffers and relays the flight information generated by the fdb_manager
process to the Ground Time Prediction System. The DAS Relay does not change the data; it
ensures that all data headed for the Ground Time Prediction System reach their destination.

Execution Control
The fdb_manager process starts the DAS Relay, a continuous, data-driven process. If the DAS
Relay fails, the fdb_manager parent process restarts it using the old queue so that a minimum
number of data are lost. See Section 33 for more information on restarting processes.

Input
The DAS Relay receives the packets of flight information created by the fdb_manager process.

Output

The DAS Relay output is identical to its input.

Processing

The DAS Relay opens a channel to the socket controlled by the Ground Time Prediction System.
It then continuously dequeues messages and writes them to the channel. See Section 23.2 for a
complete description of relay processes.

Error Conditions and Handling
Non-fatal errors cause an error message to appear in the main process window of the ETMS
operator's node. When a fatal error occurs, the fdb_manager process should restart the DAS
Relay. If the DAS Relay loses contact with the Ground Time Prediction System's socket, the DAS
Relay will attempt to reconnect to the socket.

25.6 The EDCT Relay Process

Purpose
The EDCT Relay process buffers and relays edct transactions generated by the fdb_manager
process to the EDCT Receiver. The EDCT Relay does not change the data; it ensures that all data
headed for the EDCT Server reach their destination.

Execution Control
The fdb_manager process starts the EDCT Relay, a continuous, data-driven process. If the EDCT
Relay fails, the fdb_manager parent process restarts it using the old queue so that a minimum
number of data are lost. See Section 33 for more information on restarting processes.

ETMS System Design Document
Version 6.0

25-10

Input
The EDCT Relay receives the packets of flight state data and control time information created by
the fdb_manager process.

Output
The EDCT Relay output is identical to its input.

Processing
The EDCT Relay opens a channel to the socket controlled by the EDCT Receiver. It then
continuously dequeues messages and writes them to the channel. See Section 23.2 for a complete
description of relay processes.

Error Conditions and Handling
Non-fatal errors cause an error message to appear in the main process window of the ETMS
operator's node. When a fatal error occurs, the fdb_manager process should restart the EDCT
Relay. If the EDCT Relay loses contact with the EDCT Receiver's socket, the EDCT Relay will
attempt to reconnect to the socket.

25.7 The Cross–String Relay Process

Purpose
The Cross-String Relay process buffers and relays cross-string transactions (e.g., updated FDB
records and event lists) generated by the Master fdb_manager process. It relays these
transactions to the FDB Receiver on the slave string. The Cross-String Relay does not change the
data; it ensures that all data headed for the the slave FDB string reach their destination.

Execution Control
The fdb_manager process starts the Cross-String Relay, a continuous, data-driven process. If the
Cross-String Relay fails, the fdb_manager parent process restarts it using the old queue so that a
minimum number of data are lost. See Section 33 for more information on restarting processes.

Input
The Cross-String Relay receives buffered cross-string transactions created by the master
fdb_manager processes.

Output

The Cross-String Relay output is identical to its input.

Processing
The Cross-String Relay opens a channel to the socket controlled by the slave FDB Receiver. It
then continuously dequeues messages and writes them to the channel. See Section 23.2 for a
complete description of relay processes.

ETMS System Design Document
Version 6.0

25-11

Error Conditions and Handling
Non-fatal errors cause an error message to appear in the main process window of the ETMS
operator's node. When a fatal error occurs, the fdb_manager process should restart the
Cross-String Relay. If the Cross-String Relay loses contact with the slave FDB Receiver's socket,
the Cross-String Relay will attempt to reconnect to the socket.

25.8 The FDB Router

Purpose
The FDB Router (FDBR) process responds to center list (CLIST) requests from the TDB, Flight
Requests from the EDCT, recovery requests from the FTM, reconfigure requests, and status
requests. The FDBR works in coordination with the FDB Data Servers to provide a mechanism
for accessing data from the Flight Database without burdening the fdb_manager.

Execution Control
Nodescan starts the FDBR process. The FDBR creates a socket and connects to the node switch
via network addressing. It waits for the FDB Data Server to connect to the socket and then
advances to its primary processing loop waiting for FDB data requests. On receipt of a valid data
request, it formats a message and sends it to the FDB Data Server process via the socket.

Input
All inputs to the FDBR are in the form of FDB data requests. Valid inputs to the FDBR are
center list (CLIST) requests from the TDB, Flight (FDATA) requests from the EDCT, recovery
requests from the FTM, reconfigure requests, and status requests.

Output
The FDBR outputs socket messages containing FDB data requests to the FDB Data Server and
Clist, Flight, and Status responses to the specified destination address.

ETMS System Design Document
Version 6.0

25-12

FDB1

FDB Router

FDB Data
Server

Recovery
Process

Socket

Clist Report
Flight Report
Stats Response

Clist Req.
Flight Req.

FTM Recovery Req.
Recofigure Req.

Stats Req.

Clist Req.
Flight Req.

FTM Recovery Req.
Reconfigure Req.

Clist Req.
Flight Req.
FTM Recovery Req.
Reconfigure Req.

Done Resp.

Done Resp.

FDB Records
Event Lists

Recovery Data

FTM Recovery Req.
Reconfigure Req.

Figure 25-3. FDB Router/Data Server

Processing
When the FDBR begins execution, it creates the FDB router socket. This socket is used for all
correspondence between the FDBR and the FDB Data Servers. Once the socket has been
created, the FDBR synchronizes with the FDB Data Server by waiting until it has successfully
connected to the socket. When the connection is complete, the FDBR connects to the node
switch. The FDBR proceeds to its main processing loop where it waits on events either from
network addressing or from the socket.

The FDBR processes five distinct event types from network addressing: clist requests, Fdata
requests, ftm recovery requests, reconfigure requests, and stats requests.

ETMS System Design Document
Version 6.0

25-13

(1) Center List (CList) Requests - Copy the source filename, restriction filename,
clist output filename, and the airport flag into the message buffer. The message is
sent via the FDBR socket to the FDB Data Server. The FDB Data Server
responds with a Done message signaling the FDBR that the clist request has been
fulfilled. The FDBR sends the clist to the destination address specified in the
original request.

(2) Flight (FDATA) Requests - Copy the filename containing a list of flight IDs into
the message buffer. Generate an empty response file. Send filenames to FDB
Data Server and wait for response. The FDB Data Server accesses the FDB
database and populates the response file. Send response file via network
addressing to requestor.

(3) FTM Recovery Requests

(a) Fill-in - Decode a message from network addressing and forward the request
to the FDB Data Server.

(b) Recovery Status - Decode recovery responses from the full recovery process
and relay the status to the FTM if necessary.

(c) Recovery Stop - Check the queue of active recoveries and if the specified
recovery is on the active queue, force removal from the queue by setting the
expiration flag.

(d) Full Recovery - Decode the recovery request, insert it into the active or
pending queue, forward the request to the FDB Data Server, and return status
to the FTM.

(4) Reconfigure Requests

(a) Enable/Disable Full FTM Recoveries.

(b) Enable/Disable Mini FTM Recoveries.

(c) FDB-FDB Recovery - Decode the recovery request, forward the request to
the FDB Data Server, and return status to the invoker.

(5) Stats Requests

(a) Level 1 − Send active full recovery stats to requester through network
addressing.

(b) Level 2 − Send pending full recovery stats to requester through network
addressing.

(c) Level 3 − Send completed full recovery stats to requester through network
addressing.

ETMS System Design Document
Version 6.0

25-14

Error Conditions and Handling
Fatal errors cause the FDBR to terminate. There are two errors that are considered fatal:

(1) Unable to create router socket. The FDBR retries one time before exiting.

(2) Unable to connect to node switch.

All non-fatal errors cause an error message to appear in the main process window of the ETMS
operator's node.

25.9 FDB Data Server

Purpose
The purpose of FDB Data Server is to give other processes access to the FDB database. The
FDB Data Server receives requests from the FDB Router and maps the FDB database to access
flight information. The FDB Data Server processes requests and produces reports. The FDB
Data Server also invokes recovery processes.

ETMS System Design Document
Version 6.0

25-15

FDB

FDB
Data Server

25.9

FDB
Router

25.8

FDB
Recovery

25.12

FTM
Recovery

Socket
Requests

Done Message

Flight
Information

Figure 25-4. Data Flow of the FDB Data Server Process

Execution Control

The FDB Data Server is normally started by the Nodescan utility.

Input
The FDB Data Server requires fdb_data_server.params at startup. The fdb_data_server.params
contains the FDB Router socket name, the location of the FDB database , and the path name of
recovery process.

All other input is received through the FDB Router socket as follows:

(1) FDATA request − FDB Data Server receives the name of a file containing flight
IDs.

(2) SDATA request − FDB Data Server receives the name of a file containing flight
IDs.

(3) CLIST request − FDB Data Server receives clist file and restriction file names.

(4) FTM recovery request − There are full FTM recovery and fill-in FTM recovery
requests.

ETMS System Design Document
Version 6.0

25-16

(5) FDB recovery request − The full FDB cross-string recovery is for a slave FDB.

Output

The following is a list of the output files generated by the FDB Data Server:

(1) fdata_response.timestamp − contains departure and arrival airports, departure and
arrival times, and departure and arrival centers. The file is located at
ttm/fdb/programs/fdata_response.timestamp.

(2) pf_fdb_file.timestamp or file.timestamp − contains flight IDs, departure date, way
points or proposed speed. These files are sent to ADR process.

(3) temp_clist.timestamp − contains airport information for flights. The file is located
at ttm/fdb/dynamic_data/temp_clist.timestamp.

Processing
Processing begins with getting arguments from the parameters file and accessing the FDB
database. When connecting to the FDB Router socket, the FDB Data Server receives FDATA,
SDATA, CLIST, FTM recovery, and FDB recovery requests. For FDATA, SDATA, and CLIST
requests, the FDB Data Server receives input files. After comparing with the FDB database, the
results are written to output files. For FTM and FDB recovery requests, the FDB Data Server
invokes child processes in background mode. FTM recovery has fill-in partial recovery and full
recovery. FDB recovery has only full recovery. When complete, the FDB Data Server sends a
done message to FDB Router.

Error Conditions and Handling

Errors cause an error message to appear in main process window of the FDB Data Server.

25.10 Route Relay

Purpose
The Route Relay (Rt_relay) process transmits ascii route transactions from the FDB to the NAS
Dist process. Each time the FDB Manager receives a message which would cause the route of a
flight to be updated, it enqueues this update buffer to a shared queue with the Route Relay
process. The Route Relay process dequeues these update messages and sends them via the node
switch to nas.dist.

ETMS System Design Document
Version 6.0

25-17

NAS Dist

Rt_relay

Node
Switch

Status
reply

ASCII
route
xactions

Status
requests

ASCII
route
xactions

ASCII
route
xactions/
stat reply

Status
requests

FDB Manager

ASCII
route
xactions

Figure 25-5. Data Flow of the Route Relay Process

Execution
The Route Relay process executes as a child of the FDB Manager. Once started, it executes
continuously until its parent process terminates. It is strictly event driven and remains idle until
either a status request is received or a route update message is queued by the FDB Manager. In
the case of a route update message, no data transformation is required. The message is dequeued
and forwarded to NAS Dist. For a status request, the transmission statistics are formatted into a
readable message prior to transmission.

Input
The inputs to the Route Relay process are buffered ascii route updates and status requests.

Output
The Route Relay process sends ascii route updates to the NAS Dist process. It also responds to
status requests with a buffer of transmission statistics.

ETMS System Design Document
Version 6.0

25-18

Processing
The FDB Manager spawns the Route Relay process and creates the queue that is shared by both
processes as part of its initialization sequence. The Route Relay process is spawned with two
arguments: the shared queue number and a parameter file. The parameters file contains network
related information which permits the Route Relay process to connect to the node switch. On
initialization, the Route Relay process reads its associated parameter file and uses this
information to connect to the node switch. Once connected, it maps an area of memory to be
used as the shared queue with the FDB Manager. The Route Relay process waits for an event
indicating that either a message has been enqueued by the FDB Manager or a status request has
been sent. .

When a status request is received, the Route Relay process responds with statistics detailing
transmission characteristics (e.g., bytes dequeued or messages sent). When a route update is
queued, the Route Relay process dequeues the message and forwards it to NAS Dist. Each time
an event is processed, Route Relay validates its connection to the node switch, and if appropriate,
reconnects.

Error Conditions and Processing

The Route Relay Process terminates in one of two ways:

• The FDB Manager (its parent process) terminates.

• The process is unable to connect to the node switch.

Recoverable errors cause a message to be printed to the process' output pad.

25.11 The FDB Distribution Process

Purpose
The FDB Distribution process transfers data transactions between the FDPs and connected client
FTMs.

Execution Control
The FDB Distribution process is started by Nodescan. It reads a parameter file describing the
process configuration and starts the FDB Distribution Receiver to get TTM-FTM Transactions .
Once started, it runs continuously. If it halts, Nodescan restarts it. For more information on
Nodescan, see Section 33.2.

ETMS System Design Document
Version 6.0

25-19

FDB Dist
Relay

FDB
Distributor
Receiver

FBD
Distributor

FTM

FTM

FTM

FTMNode
switch

Node
switch

Node
switch

Node
switch

Node
switch

Connect—disconnect Requests

TTM—FTM Transactions

Socket

Figure 25-6. Data Flow of FDB Distribution

Input
The FDB Distribution process reads its parameters from a parameters file, provided in the
program command line. The following is a list of parameters contained in the parameters file:

(1) FDB Distribution Receiver queue startup instruction that can be either NEW
indicating a new receiver input queue is to be created or OLD indicating that the
existing queue and its contents should be used. If the queue cannot be
successfully opened, FDB Distribution ceases all processing, closes any queue
that has been opened, and deletes the memory_blocks and
memory_stack_and_queues files. After being restarted by Nodescan, FDB
Distribution creates a fresh queue. FDB Distribution also opens and controls the
process pads used to display processing statistics and error messages after which
it establishes a node switch connection and registers as a provider.

(2) Number indicating which FDB Distribution process is to be started. The number 1
indicates the primary FDB Distribution process; any other number indicates the
start of a secondary process which is a client to the primary process.

(3) ASCII string indicating the home site for the FDB Distribution process.

ETMS System Design Document
Version 6.0

25-20

(4) ASCII string indicating the class name. If this is the secondary FDB Distribution
process, an ASCII string indicating the primary process class name must follow
the secondary class name on this line.

(5) Directory containing the executable programs to start up.

(6) Directory and file name of the site authorization file.

(7) ASCII string indicating the operator monitor class where all FDB Distribution
process error messages will be sent.

(8) The receiver synchronization file name.

(9) FDB Distribution Receiver startup instructions. The line consists of the following
three items:

o The file name of the FDB Distribution Receiver.

o Directory and file name of the FDB Distribution Receiver socket.

o The maximum number of queue blocks.

Additionally, the FDB Distribution process reads various optional process control switches from
the command line. These may include the following:

• Option -q <synchronization file name> - This option directs the FDB
Distribution process to receive input transactions from a local source.

• Option -r <polling rate> - This option directs the FDB Distribution process to
“poll” all process connections at the specified polling rate, in seconds. The default
value is 20 seconds.

• Option -t <timeout value> - This option directs the client FDB Distribution
process to issue disconnect and reconnect requests to the primary FDB
Distribution process at the specified timeout value, in seconds. The default value
is 180 seconds.

After initialization, data input to the FDB Distribution process consists of TTM-FTM
transactions queued up by the FDB Distribution Receiver process and generated by the FDPs
and messages received through a network addressing switch (node switch). For a description of
the contents of the input messages, see Data Structure Table 25-15 and following for TTM-FTM
transactions and Section 33 for node switch messages.

Output
The FDB Distribution process buffers multiple TTM-FTM transactions by type (military or
non-military) and sends them to the client FTMs. The buffering process does not alter the content
of the individual transaction therefore individual input transactions are identical to individual
output transactions.

Processing Overview
The FDB Distribution process transfers data transactions between the FDPs and connected client
FTMs. The overall system can be configured with two FDB Distribution Processes; one as the

ETMS System Design Document
Version 6.0

25-21

primary and one as a client to the primary.

At initialization, FDB Distribution reads the program parameter file name and optional switches
from the command line. After it reads the parameters from the parameter file, it opens or creates
an input queue for the FDB Distribution Receiver function and starts up the FDB Receiver as a
child process. FDB Distribution determines whether to open an existing queue or create a new
one based on the startup mode (new or old). If FDB Distribution is started with the new option,
it creates a new input queue. Otherwise, it attempts to preserve the contents of the queue by
opening the existing queue.

After initialization, FDB Distribution operates in a continuous, cyclic fashion. With each pass
through the loop, it continuously monitors its child process (FDB Distribution Receiver). If the
child process has stopped, it is restarted automatically. In addition to identifying incoming
messages and processing them according to message type, FDB Distribution verifies its node
switch connection, re-connecting as a provider if a disconnect has occurred. The three major
processing modules within FDB Distribution are FDB Distribution Receiver, Process FDP
Message, and Process Node Switch Message.

FDB Distribution Receiver The FDB Distribution Receiver process retrieves FDP messages
from its socket and places them in the queue feeding FDB Distribution.

Process FDP Message The Process FDP Message Module dequeues TTM-FTM transactions
from its input queue fed by the FDB Distribution Receiver, stores the transaction to either a
military or non-military buffer and sends the buffers to connected clients. The buffers are sent
when full or at a maximum wait of 30 seconds.

Process Node Switch Message The Process Node Switch Message Module handles messages
received from the network through a node switch port. The messages processed are returned
messages (messages sent by FDB Distribution that were undeliverable), network informational
messages (messages requesting statistics or FDB Distribution specific identification
information), inter-fdbd messages (messages between a primary FDB Distribution process and
a client FDB Distribution process) and connect/disconnect messages from client FTMs.

Error Conditions and Handling
The following is a list of error conditions that cause program termination, with an error status:

(1) No parameters file name provided in command line, or unable to open parameters
file.

(2) Unable to open or create the input queue.

(3) Specifying a command line switch without an associated value or specifying an
unknown switch.

(4) Can't start the receiver.

(5) No distribution class named in the parameters file or the name given is too long.

(6) No site named in the parameters file or the name is too long.

(7) Unable to load the site authorization file.

ETMS System Design Document
Version 6.0

25-22

(8) No operator monitor class named in the parameters file or the name is too long.

(9) No primary FDB Distribution process named when starting a client process.

(10) Unable to get timer event counter.

25.11.1 The FDB Distribution Receiver Module
The FDB Distribution Receiver is an instance of the generic receiver provided as a part of the
Generic Buffering Package. For general information on this and other receiver processes, see
Section 23.2

Purpose
The purpose of the FDB Distribution Receiver is to enqueue transactions generated by the FDP.
The FDB Distribution Receiver buffers the messages in a manner that isolates FDB Distribution
from any I/O processing, thus allowing FDB Distribution to process input transactions both
asynchronously and chronologically.

Execution Control
The FDB Distribution process starts the FDB Distribution Receiver as a child process. This
data-driven process runs continuously; if it fails, FDB Distribution, the parent process, restarts it
using the pre-existent queue so that a minimum amount of data is lost. Non-fatal errors cause an
error message to appear in the receiver window of the ETMS operator's node.

Input
FDB Distribution Receiver input consists of TTM-FTM transactions (Tables 25-15 through
25-21) generated by the FDP.

Output
The FDB Distribution Receiver output is identical to its input.

Processing
The FDB Distribution Receiver creates the socket to which the FDB Dist Relay connects. It also
allocates memory for use as its output queue. As messages come into the socket, the FDB
Distribution Receiver retrieves them and places them in its queue for use by the FDB
Distribution process.

Error Conditions and Handling
For a complete description of possible errors generated by the FDB Distribution Receiver, see
Section 23.2.

ETMS System Design Document
Version 6.0

25-23

25.11.2 The Process FDP Message Module

Purpose
The purpose of Process FDP Message is to dequeue FTM-TTM transactions generated by the
FDP, buffer the transactions and send them to the client FTMs. The messages are stored to a
military or non-military buffer type.

Input
The input to Process FDP Message consists of five types of TTM-FTM transactions. They are
tz, time, route, cancellation, and position. Each transaction type correlates to one or more NAS
message type as shown below. .

TTM-FTM transaction type NAS message type

TZ TZ

TIME AZ, DZ, EDCT

ROUTE AF, FS, FZ, UZ, FA

CANCELLATION RS, RZ, SI_CANCEL_FLIGHT,
CONTROL_CANCEL

POSITION TA, TO

For a description of TTM-FTM transactions and NAS message types, see Tables 25-15
through 25-27 at the end of this Section.

Output
The output from Process FDP Message consists of buffers containing multiple TTM-FTM
transactions.

Processing
The Process FDP Message module begins by checking the wait period (30 seconds) to send the
buffers. If the time has elapsed and data has been stored, it sends the buffers via network
addressing to its client FTMs and resets the timer. Process FDP Message then enters a loop
dequeuing FTM-TTM transactions until the queue is empty. With each cycle through the loop,
it increments the appropriate statistical counters, checks for and responds to node switch
messages, loads the output buffers and when the buffers are full, sends them to the client FTMs.

Error Conditions and Handling
Process FDP Message handles the following six error conditions:

(1) Can't dequeue a message  Process FDP Message keeps trying to dequeue
transactions until successful. An error message is written to the screen with each
pass through the loop until a message is dequeued.

ETMS System Design Document
Version 6.0

25-24

(2) Bad message type  An error message is written to the screen and processing
continues.

(3) Bad message size  An error message is written to the screen and processing
continues.

(4) Unknown error when sending output buffer  An error message is written to
the screen and Process FDP Message goes into a loop resending the message
until it is successful.

(5) Bad output buffer size  An error message and the dequeued message are
written to the screen.

(6) Output port full  An error message is written to the screen and Process FDP
Message goes into a wait loop until the port clears. When the port clears, held
buffers are resent.

25.11.3 The Process Node Switch Message Module

Purpose
The purpose of Process Node Switch Message is to respond to messages received from network
addressing.

Input
The input to Process Node Switch Message consists, in general, of two categories of node switch
messages.

• Returned messages  Messages sent by the FDB Distribution which were
undeliverable and were returned by the network addressing package.

• Network informational requests  Messages from other processes requesting
information from FDB Distribution. These messages include inter-fdbd
messages (messages between a primary and client FDB Distribution process) and
connect-disconnect requests (messages that add or delete FTMs from FDB
Distribution's client list).

Output
The output from Process Node Switch Message is dependent upon the category of the input
message and is explained in the Processing section that follows.

Processing
Process Node Switch Message begins by entering a loop that it does not exit until all messages
have been retrieved. With each pass through the loop, Process Node Switch Message retrieves a
message, determines the category of the message and acts based either on the network addressing
return reason or the network addressing message type.

ETMS System Design Document
Version 6.0

25-25

For returned messages with the following reasons, Process Node Switch Message attempts first
to convert the site code to ascii and then to convert the class to ascii. If either conversion fails, it
issues an error message and continues. If the primary FDB Distribution is receiving the returned
message, it removes the source of the message from its client list. If it is the client FDB
Distribution, it reconnects to the primary and resets the timing connection to the primary. If
Process Node Switch Message receives a message that has a return reason other than the
following, it waits one second, checks the port trigger value and cycles to the top of the loop.

• ERR_NET_BAD_NODE_ID

• ERR_NET_GATE_UNAVAIL

• ERR_NET_PCK_TIMEOUT

• ERR_NET_BAD_DEST_ADDRESS

• ERR_NET_BAD_RESOURCE_ID

• ERR_NET_QUEUE_CLEARED

Process Node Switch Message responds to network informational messages based on the type of
request. These messages include requests from another FDB Distribution Process
(connect-reconnect, client list and pulse request/reply), connect-disconnects from client FTMs
and general user requests for statistical data.

For more information on network addressing, see Section 33.2.

Error Conditions and Handling
Process Node Switch Message writes an error message to the screen indicating the network
process that failed and showing the source of the message, the destination of the message, or
both as the error dictates. It continues processing, returning only when the port is empty. In the
case of a full port, Process Node Switch Message issues an error, waits until the port is available
and then continues standard processing.

25.12 The FDB Recovery Process

Purpose
The purpose of FDB cross-string recovery is to copy the entire flight database from one string to
another. The FDB on the first string must be in Master mode and the FDB on the second string
must be in Slave mode for cross-string recovery to occur. See the Design Issues in Section 25
for a description of Master and Slave modes.

Execution Control
When the FDB Router (Section 25.8) on the Master string receives an FDB Recovery request, it
forwards this request to the FDB Data Server (Section 25.9) processes, which then spawns a
new FDB Recovery process.

Figure 25-7 depicts the data flow for the FDB Recovery process.

ETMS System Design Document
Version 6.0

25-26

Input
On startup, the FDB Recovery process receives the recovery parameters from the FDB Data
Server. These recovery parameters identify the type of recovery to be performed, the time
window within which all FDB records should be restored, the identity of the string being
recovered, etc.

During recovery processing, the FDB Recovery process reads flight records and event lists from
the flight database.

Output
The FDB Recovery process generates cross-string recovery messages containing flight database
records, which are sent to the Slave FDB.

The FDB Recovery process tracks the total number of flight database records sent, the total
number of errors that occurred while attempting to send records, and the total time required to
complete cross-string recovery. These statistics are reported to the ETMS operator and to the
FDB Data Server.

Processing
The FDB Recovery process determines the identity of the string whose flight database is to be
replaced, and creates an output queue to which all of the cross-string recovery messages will be
written. The FDB Recovery process then spawns a relay process to transfer messages from the
queue to the socket of the FDB Receiver on the Slave string. (See Section 23.2 for a complete
description of relay processes and message queues.)

The FDB Recovery process then reads through its entire flight database, one record at a time. If
the record has not been marked as having been deleted from the database, then it is incorporated
into a cross-string recovery message and written to the output queue.

The FDB Recovery process and its child relay process terminate when the cross-string recovery
has completed.

See Figure 25-8 for a detailed sequential logic diagram of the FDB Recovery program.

See the Design Issues in at the beginning of this Section for a description of how the Slave FDB
handles the cross-string recovery messages sent by the FDB Recovery process.

Error Conditions and Handling
Certain errors are fatal to the FDB Recovery process. This process terminates unsuccessfully if it
cannot properly map the flight database files, or if the designated recovery string is not valid, or
if it is unable to create the output queue and spawn a relay process. In these cases, error
messages appear on the ETMS operator's node and the FDB Recovery process terminates.

Non-fatal errors cause an error message to appear in the receiver window of the ETMS operator's
node.

ETMS System Design Document
Version 6.0

25-27

Spawned
Relay

FDB Receiver 1
25.1

FDB Router
25.8

Spawned
FDB Recovery

Process

FDB
Data Server

25.9

Socket

Flight
Database

Master FDB

Slave FDB
Cross-string
Recovery
Messages

Cross-string
Recovery
Messages

FDB
Records
A - M,
Event Lists

Recovery
Arguments

Forward FDB
Recovery Request

FDB
Recovery
Request

Figure 25-7. Data Flow of the FDB Recovery Process

ETMS System Design Document
Version 6.0

25-28

Begin

Exit

Is time stamp within
specified time

window?

Has it been marked
as “deleted”?

Queue full?

Get program arguments

Terminate relay process

Close queue

Wait for queue to empty
or time out

Every fifth time through this loop, display statistics
about messages sent/failed

Incorporate the data into a cross-string recovery message

Pause for a while

Enqueue the message

Get next flight record and its associated event list

Create output queue and spawn relay process

Initialize network addressing; connect to node switch
Map element names, flight db and event db files;

Validate cross-string ID

Any more FDB
records?

Yes

No

No

Yes

Yes

No

Yes No

Figure 25-8. Sequential Logic for the FDB Recovery Process

ETMS System Design Document
Version 6.0

25-29

25.13 The FTM Recovery Process

Purpose
The purpose of the FTM Recovery process is to restore part or all of the FTM database at a field
site from the flight database at the central site. There are two main types of FTM recovery: full
recovery, in which restores the entire database, and fill-in recovery, which restores information
for specifically requested flights.

Execution Control
When the FDB Router (Section 25.8) receives an FTM Recovery request, it forwards this request
to the FDB Data Server (Section 25.9) process, which then spawns a new FTM Recovery
process. The two FTM Recovery processes behave in an identical manner.

Figure 25-9 depicts the data flow for the FTM Recovery process.

Input
On startup, the FTM Recovery process receives the recovery parameters from the FDB Data
Server. These recovery parameters include

(1) The recovery type (full or fill-in)

(2) The maximum number of FDB records allowed to be recovered

(3) The maximum number of data blocks per flight

(4) The pathnames of the FDB and EVDB files to be recovered

(5) The FTM and FTM Coprocessor network addresses

(6) The sequence number

(7) The recovery time

(8) The pathnames of the Element Names and ARTCC Pairs files

(9) The pathname of the sitefile

(10) The flight offset

(11) The number of flight records to be recovered (fill-in requests only)

(12) A list of flight IDs and their corresponding TDB indices (fill-in requests only)

(13) A start/stop time window (for full recoveries only; only flight database records
whose time stamps are within this window will be recovered)

During recovery processing, the FTM Recovery process reads flight records and event lists from
the flight database. The format of these records is described in Section 25.14.

ETMS System Design Document
Version 6.0

25-30

Output
The FTM Recovery process generates recovery messages containing flight database records,
which are sent to the FTM, and status messages, which are sent to the FDB Router.

The FTM Recovery process tracks the total number of flight database records sent, the total
number of errors that occurred while attempting to send records, and the total time required to
complete FTM recovery. These statistics are reported to the ETMS operator and to the FDB
Data Server.

Processing Overview
The FTM Recovery process invokes its Initialize routine to create its output files, read the input
parameters, determine the type of recovery to be performed, and map the flight database files.
For full recoveries, the FTM Recovery process then invokes the process_full_recovery routine
(see Section 25.13.1); for fill-in recoveries, it invokes the process_data_recovery routine (see
Section 25.13.2).

See Figure 25-10 for a sequential logic diagram of the FTM Recovery process.

See Section 18 for a description of how the FTM handles the recovery data blocks sent by the
FTM Recovery process.

Error Conditions and Handling
Certain errors are fatal to the FTM Recovery process. This process terminates unsuccessfully if it
cannot properly map the flight database files, or if the designated FTM network address is not
valid, or if it is unable to create the output queue and spawn a relay process. In these cases, error
messages appear on the ETMS operator's node and the FTM Recovery process terminates.

Non-fatal errors cause an error message to appear in the receiver window of the ETMS operator's
node.

ETMS System Design Document
Version 6.0

25-31

Spawned
FTM Recovery

Process 1

FDB Router
25.8

FTM

FDB 1
Data Server

25.9

Socket

Flight
Database

1

Recovery
Arguments

Responses

TTM-FTM Buffers
Critical Buffers

FDB
Records
A – M
Event Lists

Status

Forwarded
Requests

Full Recovery Requests
Fill-in Requests

TTM-FTM Buffers
Critical Buffers

Figure 25-9. Data Flow of the FTM Recovery Process

ETMS System Design Document
Version 6.0

25-32

Compute and display
stats, send to FDB

Router (25.8)

Recovery type?

Begin

Exit

Get start-up parameters

Send back flight Ids that
couldn’t be processed

Send as many “active” flights as
possible, as quickly as possible,
periodically requesting ACK from

FTM

Send data to FTM

Close connection

Determine time window
For each requested

flight, get flight record

Send all other flights from that time
window (all actives that weren’t
already sent plus all other). (No

time pressure this time.)

FullFill-in

Figure 25-10. Sequential Logic for the FTM Recovery Process

ETMS System Design Document
Version 6.0

25-33

25.13.1 The process_full_recovery Routine

Purpose
The purpose of the process_full_recovery routine is to retrieve all of the flight records and event
lists in the flight database whose time stamps fall within a specified time window, and to send
these records to the FTM that requested them. The time window can be as small as 15 minutes,
or can cover the entire database.

Input
The process_full_recovery routine receives a full-recovery request record. This record identifies
the network address of the requesting FTM and the requested recovery time window.

Output
The process_full_recovery routine sends several status records to the FDB Router. These status
records indicate the progress of the recovery.

Processing
The process_full_recovery routine performs the following steps:

• Send a status message to the FDB Router indicating that FTM recovery has been
initiated

• Call the extract_valid_indexes routine (Section 25.13.1.1) to retrieve and send the
flight records for active flights

• Send a status message to the FDB Router indicating that the first part of the FTM
recovery is complete

• Call the send_remaining routine (Section 25.13.1.2) to retrieve and send the flight
records for all remaining flights

• Send a status message to the FDB Router indicating that FTM recovery has been
completed

• Display a summary of the recovery process statistics on the screen

25.13.1.1 The extract_valid_indexes Routine

Purpose
The extract_valid_indexes routine is a first-pass attempt to send as many critical flight database
records as possible to the FTM, as quickly as possible. Only records for active flights are sent in
this first pass.

ETMS System Design Document
Version 6.0

25-34

Input
The extract_valid_indexes routine receives a full-recovery request record, which identifies the
network address of requesting FTM and the requested recovery time window. This routine also
reads data from the flight database (described in Section 25.14).

Output
The extract_valid_indexes routine sends status records to the FDB Router, which indicates the
progress of the recovery, and sends requests for acknowledgement records to the FTM. This
routine also updates a global status record, which keeps track of the total number of records sent
to the FTM, the total number of flights of each type (active, controlled, scheduled, etc.), the total
number of bytes sent to the FTM, and the number of acknowledgement requests sent and
received.

Processing
The extract_valid_indexes routine examines each record in the flight database. If the record has
not been marked as “deleted”, and if its time stamp falls within the specified time window, then
it will be sent to the FTM. If the flight's status is active and this process is not currently waiting
for an acknowledgement message from the FTM, then extract_valid_indexes calls the
packsend_critical routine (see Section 25.13.1.2.1) to pack the flight record and its associated
event list into a buffer, and to send the buffer to the FTM if it is full. If the flight's status is not
active, or if this process is waiting for an acknowledgement message from the FTM, then the
flight record is not sent yet; its FDB address is saved to be sent later.

After a certain number of blocks have been sent to the FTM (defined by the constant
BLOCKS_BETWEEN_ACKS), a status message is sent to the FDB Router process indicating
that the FTM recovery is still in progress, and an acknowledgement-request message is sent to
the FTM. No more recovery data blocks will be sent to the FTM until an acknowledgement
message has been received from the FTM. (The extract_valid_indexes routine is not idle while
waiting for the acknowledgement; it continues searching through the flight database for records
to be included in the recovery, and it saves the addresses of these records to be sent later.)

The check_fmtr_port routine (see Section 25.13.1.2.2) is called regularly to look for and process
incoming messages from the FTM.

25.13.1.2 The send_remaining Routine

Purpose
The send_remaining routine is the second pass through the flight database. All flight database
records within the time window that were not sent by extract_valid_indexes in the first pass are
sent here.

ETMS System Design Document
Version 6.0

25-35

Input
This routine receives a copy of the full-recovery request record, which identifies the network
address of requesting FTM and the requested recovery time window. This routine also receives a
list of FDB addresses that were saved by xtract_valid_indexes in the first pass; records at those
addresses will be sent to the FTM. This routine also reads data from the flight database
(described in Section 25.14).

Output
The routine sends status records to the FDB Router, which indicates the progress of the recovery,
and sends requests for acknowledgement records to the FTM. This routine also updates a global
status record, which keeps track of the total number of records sent to the FTM, the total number
of flights of each type (active, controlled, scheduled, etc.), the total number of bytes sent to the
FTM, and the number of acknowledgements requests sent and received.

Processing
The send_remaining routine retrieves the flight records and event lists for all flights whose FDB
addresses were saved by the extract_valid_indexes routine, and sends them to the FTM. (These
include those records for active flights that could not be sent by extract_valid_indexes because
this process was waiting for an acknowledgement from the FTM, and all flights of all other
types.) Similar to extract_valid_indexes, send_remaining requests an acknowledgement from
the FTM after a certain number of blocks has been sent; unlike extract_valid_indexes, however,
it does no other processing while waiting for the acknowledgement.

The send_remaining routine sends flight records in order of flight status. They are sent in the
following order:

(1) active

(2) controlled

(3) filed

(4) scheduled

(5) cancelled

(6) completed

(7) decontrolled

(8) ascending

(9) cruising

(10) descending

(11) no status

(12) error

The check_fmtr_port routine (see Section 25.13.1.2.2) is called regularly to look for and process
incoming messages from the FTM.

ETMS System Design Document
Version 6.0

25-36

25.13.1.2.1 The packsend_critical Routine

Purpose
The purpose of the packsend_critical routine is to pack flight database records into a buffer, and
to send the buffer to the FTM when it is full.

Input
The packsend_critical routine receives the flight database record to be packed, the status of the
flight (scheduled, files, active, etc.), and the network address of the FTM to which the buffer of
packed flight database records is to be sent.

Output
The packsend_critical routine sends a buffer filled with packed flight database records to the
FTM. This routine also updates a global status record, which keeps track of the total number of
bytes sent to the FTM. It also indicates to its calling routine whether or not it was able to
successfully pack the record, and whether or not it sent the buffer to the FTM.

Processing
The packsend_critical routine packs a flight record and its associated event list into the format
expected by the FTM. Data for flights whose status is active, controlled, or filed are packed by
the packftmblk routine; all others are packed by the packftmrcvr routine (see Section
25.13.1.2.1.1).

The packsend_critical routine maintains a buffer of the packed FTM records. If there is room in
the buffer for the newly packed record, then it is added to the buffer. If there is not enough
room, then packsend_critical sends the buffer to the FTM, clears it, and stores the newly packed
record into the empty buffer.

25.13.1.2.1.1 The packftmblk and packftmrcvr Routines

Purpose
The purpose of the packftmblk and packftmrcvr routines is to reformat flight database records
into the format expected by the FTM.

Input
These routines receive as input the flight database record to be packed, the status of the flight,
and the network address of the FTM to which the data is to be sent.

Output
The packftmblk routine packs the flight database record into the format shown in the TTM-FTM
Block Transaction table (see Table 25-15); packftmrcvr packs the data into the format shown in
the TTM-FTM Recovery Transaction table (see Table 25-17).

ETMS System Design Document
Version 6.0

25-37

Processing
Both of these routines first pack the FDB-FTM data block with a departure date, time stamp,
flight status, altitude, and speed. (For altitude, the routines use reported values if they exist;
otherwise they use proposed values. For speed, they use proposed values if they exist; otherwise
they use reported values.)

The packftmblk routine (which was called for flights with a status of active, controlled, or filed)
then determines the next lat/long point from the event list and packs that into the record; it also
adds the six departure/arrival times (scheduled/proposed/actual/estimated/controlled/original),
arrival fix data, waypoints, sectors, fixes, airways, and centers. The packftmrcvr routine packs
only two of the six departure/arrival times (controlled and original).

Both routines pack the estimated times of departure and arrival and the estimated time en route,
the departure and arrival airports and centers, the aircraft type, category, and weight class, and
the arrival fix data.

25.13.1.2.2 The check_ftmr_port Routine

Purpose
The purpose of the check_ftmr_port routine is to look for and process messages from the FTM.

Input
This routine is given the network address of the FTM by its calling routine; it receives various
types of messages from the FTM.

Output
This routine updates the acknowledgment-counter when an acknowledgment message is received
from the FTM, and tells its calling routine that it is no longer waiting for an acknowledgment.
This routine also updates the global FTM recovery status record, and creates status records for
the FDB Router.

Processing
The check_ftmr_port routine checks for messages from the FTM. (It is a non-blocking check; if
there are none, it does not wait for one.) For each FTM message in the queue, the
check_ftmr_port routine checks the message status. If it is an error message, a message is
displayed for the operator; depending on how serious the error is, a fatal-error status block may
be formatted and sent to the FDB Router, and this process may terminate. If it's not an error
message, then the message type is checked, and processing occurs as follows according to
message type, as follows:

• net$_t_msg_data  A message is displayed notifying the operator that this
message was received.

• net$_t_site_reconnect  This routine calls net$_inq_my_address to check this
process's network address.

ETMS System Design Document
Version 6.0

25-38

• ftm$_t_ack_ready_receive  The acks-received counter is incremented, and the
calling routine is told that an FTM acknowledgement has been received.

• ftm$_t_recovery_stop  If the source address class is FDBR, then a fatal status
message is sent to the FDB Router and this process terminates. If the source
address class is not FDBR, then this type of message is ignored.

• ftm$_t_recovery_resend  Messages of this type are ignored.

• ftm$_t_recovery_status This is a status request from the FDB Router. The
check_ftmr_port routine creates a record reflecting the current status and calls
nwa_send_message_pri to send to the FDB Router.

• nwa_fdbd_to_fdbd  This type of message is treated as an acknowledgement
from the FTM. (See ftm$_t_ack_ready_receive above.)

• ftm$_t_give_status_lev  This routine calls handle_stats1 to format and send a
status message to the requesting process. The status message includes the elapsed
time, the network addresses of the FDB and FTM, the total number of flights, data
blocks, and bytes to be sent to the FTM, the number sent so far and the number
remaining to be sent, and the number of acknowledgments requested and received
from the FTM.

25.13.2 The process_data_recovery Routine

Purpose
The purpose of the process_data_recovery routine is to start the fill-in FTM recovery, retrieve
the flight records and event lists for specifically requested flights, and to send these records to
the FTM that requested them.

Input
List of flight IDs & their corresponding TDB indices; network address of requesting FTM;
flight database

Output
The process_data_recovery routine sends the network address of the FTM to be recovered, and
the list of requested flights, to the respondtoftm routine.

Processing
The process_data_recovery routine calls the respondtoftm routine, telling it that the message
type is ftm$_t_ttm_ftm.

ETMS System Design Document
Version 6.0

25-39

25.13.2.1 The respondtoftm Routine

Purpose
The purpose of the respondtoftm routine is to send specifically-requested flight database records
to the FTM.

Input
List of flight IDs and their corresponding TDB indices; network address of requesting FTM;
flight database

Output
FDB data blocks for flights that were found; a list of returned flights for those flights with
incompatible flight IDs

Processing
For each requested flight, the respondtoftm routine converts the flight's TDB index to the
corresponding FDB address and gets the FDB record from that address. It compares the flight ID
of the retrieved record with that specified in the input parameters from the FTM. If the flight IDs
match, then respondtoftm calls the packftmblk routine (see Section 25.13.1.2.1.1) to pack up the
flight record and its event list into an FTM data block. If the flight IDs do not match, then it is
added to the return-to-FTM record and ignored. When the FTM data block is full, it is sent to the
FTM and a new FTM block is started.

After all of the requested flights have been processed, if there is any data remaining in a
partially-filled block, it is sent to the FTM. The list of flights whose flight IDs didn't match their
TDB indices, if any, is also sent back to the FTM.

25.14 The FDB Manager Process

Purpose
This is the main flight database process. It is responsible for keeping an up-to-date entry on
every flight from those that landed 12 hours ago to those that will be taking off 12 hours in the
future. It is also effectively a switching station for flight information, receiving all messages,
then forwarding pertinent updates to a variety of final destination processes.

If it is running in master mode, it receives parsed NAS messages (flight plans, position updates,
etc.) from the Parser, matches each message to the database entry it concerns, updates the entry
with the data from the message, then distributes updates relating to the new information around
the ETMS system. If it is running in slave mode, it accepts database update messages from the
master fdb_manager, then plugs them into its database, and generates updates for processes
connected to it for data.

 In addition to this, each fdb_manager

ETMS System Design Document
Version 6.0

25-40

• Maintains a picture of the current high altitude winds to use when predicting
flight performance.

• Invokes and monitors all of its child processes (receiver and relays).

• Monitors the status of a communication channel to the network addressing
package.

• Coordinates the current master/slave setup between strings.

Design Issue: Two Files (fdb and evdb) Make Up the Flight Database
The FDB consists of two mapped files: the fdb and the evdb. Each of these files is made up of
records that contain different, yet related, information about each flight.

Each fdb record holds state information for one flight. Flight state information includes general
flight information (aircraft type, flight ID, etc.), departure and arrival times, and current flight
status (position, speed, etc.). Refer to 25-10 for a detailed description of the flight_db_type
record.

In addition to flight state information, each flight may have route information constructed from a
message containing a field 10 (flight plan). This route information is kept in the form of an event
list - a list of the NAS events (fix crossing, sector entry, sector exit, jet route tracking) that the
flight is expected to generate (and the times each event is expected). This event list is kept in a
separate mapped file called the evdb. The two mapped files are linked by means of a field in
each fdb record containing the address of a record in the evdb. The relationship of the two files
is depicted by Figure 25-11.

Each evdb record is a block of a set number (here, the constant eventsperblock) of events,
where each event is a record of the type erect (see 25-11). A variable-length event list is stored
as one or more of these blocks. For example, if eventsperblock is 30, a list of 50 events would
be stored in two evdb records. The first record would contain the first 30 events, and the second
record would contain the remaining 20 events, followed by 10 empty events. The two evdb
records are connected by the storage of the second record's address in a field in the first record.
The connection of event data blocks is also illustrated in Figure 25-11.

The fdb_manager process allocates records in the fdb and evdb by treating each map file as a
circular buffer of records. It maintains two variables (in the crashfile), which indicate the
address of the last record allocated. As fdb and evdb records are allocated, the fdb_manager
process increments these addresses until it reaches the end of the file. At this point, it resets the
address to the beginning of the file and starts over again. In order to prevent reusing records
which are being used by another flight, both fdb records and evdb blocks contain a field which
indicate they are in use. When flights are deleted from the database, their event blocks and flight
records are marked to indicate that they are available for use by another flight.

ETMS System Design Document
Version 6.0

25-41

event
eventsperblock

+1

last
event

empty
events

no next
address

event
1

event
2

event
eventsperblock

next block
address

flight id
event list
address

other flight data

fdb

evdb

Figure 25-11. Flight Database Breakdown into Mapped

Execution Control
The fdb_manager process is invoked and monitored by an external process called Nodescan.
Nodescan starts this process when the node on which the fdb_manager process is to run is booted
and if the process halts, Nodescan will restart it. For more information on the Nodescan process,
consult Section 33.

Input
The fdb_manager process receives two major types of input: start-up and initialization data in the
form of parameters files and switches, and the static and dynamic data the fdb_manager process
uses in its continuous processing. The process start-up and initialization data includes the
following parameters files and optional run-time switches:

(1) The main start-up parameters file from which the fdb_manager process obtains
database configuration and run time parameters. This text file contains process
configuration information and the names of additional parameter and data
files for use by the fdb_manager process and its child processes. Some of the items

ETMS System Design Document
Version 6.0

25-42

contained in this parameter file include

(a) The path name and screen placement for process output pads.

(b) The locations and sizes of the flight database mapped files.

(c) Child process (receiver and relay) program and parameter file names.

(d) Communication login parameters.

(e) Grid-winds data file parameters.

(f) File names for ground time data.

(g) A list of valid first characters for aircraft flight IDs. This list is used to
distribute flights over multiple fdb_manager processes, when necessary for
increased processing speed. Each process maintains only those flights whose
flight IDs begin with characters listed for that process.

(h) The name of the parameter file containing the location of the aircraft
dynamics database.

(i) The name of the TZ processing parameters file, which provides parameters
such as the time interval between messages and the maximum allowed
deviation from the route for processing of position update (TZ) messages.

(2) The -d switch, which instructs the fdb_manager process to send information on
flights removed from the database or the TDB to text files. Two parameters in the
main parameter file define path names for these output files. This switch is not
normally used.

(3) The -t switch, which tells the fdb_manager process not to send time-of-day
transactions to the TDB. This switch is activated on all processors except one,
when there is more than one FDP in a given ETMS string.

(4) The -s switch, primarily of use during process debugging, tells the fdb_manager
process to use time stamps from all message types as the current time value sent
to the Time Out Flights From FDB and Remove Late Departures From TDB
modules. Normally, only time stamps from NAS messages are used for this
purpose.

The fdb_manager process also uses the following types of input:

(1) Static data contained in files:

(a) Aircraft dynamics data −− This data describes the dynamics of an aircraft
based on a variety of factors; a most important one is airplane type.

(b) Element name −− This file is used in generating route information. It maps a
NAS element's internal index and type code into its name.

(c) Ground Times −− This data consists of historic ground times based on
particular flight legs as well as by flight categories. The ground time is the

ETMS System Design Document
Version 6.0

25-43

difference between a flight's proposed push-back time and its wheels-up
time.

(d) ARTCC name/character pairs −− Each pair consists of the name of each
ARTCC and its corresponding single character designator. Used when
compiling ARTCC information during route transaction generation.

(2) Dynamic non-flight data −− This is data which may change during execution, but
which does not involve information about a particular flight.

(a) High altitude winds data. This data is used in predicting flight times.

(b) Messages from the network addressing package. These messages could be

o Notification that a new winds file has arrived to be read in.

o Master/slave coordination message.

o Reconfigure command.

o Statistics request.

(c) NAS time messages −− Used as the clock for the fdb_manager process,
these messages are actually the time stamps assigned to the NAS messages
as they are received by the ETMS.

(d) EDCT FA advisories −− These messages indicate that an FA delay is
assigned to a certain airport for a certain time limit.

(e) Master/Slave coordination messages −− Used to control which string is
running in master mode.

(3) Dynamic, non-NAS flight data −− This is data that involves particular flights, but
which is not one of the standard NAS messages:

(a) Parsed EDCT messages −− These messages, generated by the EDCT Server,
supply information about ground delays issued by Air Traffic Control
System Command for individual flights.

(b) Parsed flight schedule messages −− These messages, sent to the
fdb_manager process by the Schedule Database Processor via the Parser,
provide the fdb_manager process with information regarding scheduled
flights. The two types of schedule messages are: Scheduled Flight Plan (FS)
and Schedule Cancellation (RS).

(c) Feedback messages (FA) −− These messages are returned by the Parser in
response to an FA from the FDB Manager. The FA from the FDB Manager
is a combination of an AF message from the Parser with information about a
matching flight in the flight database.

(4) Parsed NAS messages −− These contain the flight state and route data that have
been drawn from NAS messages by the Parser. The data available in these
messages can be found in Section 6. The standard NAS message types are

(a) FZ −− Flight plan.

ETMS System Design Document
Version 6.0

25-44

(b) DZ −− Departure message (flight is in the air).

(c) TZ −− Position update on active flight based on a radar return.

(d) TO −− Position update on active flight flying over an ocean (call-in).

(e) AF −− Amended flight plan.

(f) UZ −− ARTCC boundary crossing (includes route data).

(g) AZ −− Arrival message (flight has landed).

(h) RZ −− Flight cancellation message.

Output
The fdb_manager process produces the following types of output for use in other parts of the
ETMS:

(1) TTM-FTM transactions −− For each flight message received, the fdb_manager
generates a transaction for the flight that is sent to the fdb_dist process (to be
forwarded to any Flight Table Manager (FTM) processes that are connected.)
These transactions are binary, rather than in ASCII format.

(2) TDB transactions −− Provides the TDB with the current time, flight status, flight
route events, flight times, and instructions to time out late-departing flights.

(3) Feedback (FA) messages −− These messages are sent to the Parser in response to
most flight plan amendment (AF) messages received by the fdb_manager process.
These messages provide the Parser with information needed to parse the AF that
may not be contained in the original AF message.

(4) Deleted flight information messages −− Whenever a flight is deleted from the
Flight Database, that flight's information is sent to the Ground Time Prediction
Server via the DAS Relay.

(5) Updates on controlled flights −− The EDCT process informs the fdb_manager
when a control exists on a flight. The fdb_manager has to inform the EDCT
process when a flight plan (FZ) is received on a controlled flight. The
fdb_manager also sends messages to the EDCT process when a controlled flight
goes active, or if one is cancelled.

(6) V4 routes −− In Version 4.0 of ETMS, the fdb_managers forwarded information
on flight plans (routes) to various places. One of these places was the data feed
for the ATA (Air Transport Association). As part of the FAA/ATA agreement,
we must continue to provide these V4.0 format messages. These messages are
referred to as RT messages.

(7) Cross-string updates −− If an fdb_manager is running in master mode, it may be
sending database update messages to a fdb_manager on another string.

(8) Master/Slave Coordination messages −− Used to coordinate which string is in
charge.

ETMS System Design Document
Version 6.0

25-45

(9) Responses to statistics requests.

In addition, the fdb_manager process sends message statistics and non-fatal error messages as
output to its main transcript pad. This output is used in the monitoring of the fdb_manager
process. The statistics display includes, among other things, how many messages of each type
were received, the rate and type of matching to existing flights, how many TDB transactions
were generated, and how many non-fatal errors were generated while processing position update
(TZ) messages.

Since the fdb_manager process is designed to run continuously, and since the maximum disk
space used by these output pads is limited by the operating system, a mechanism for monitoring
the size of the output pad is required. The fdb_pad_check routine accomplishes this task by
examining the size of the output pad once every fifteen minutes. When the pad size becomes
larger than one megabyte, fdb_pad_check calls the routine fdb_pad_create, which closes the old
output pad and creates a new one.

Processing Overview
Figure 25-13 illustrates the data flow between the four main modules which make up the
fdb_manager process: Process Flight Messages, gridwinds_read, Time Out Flights From FDB,
and Remove Late Departures From TDB. This section contains a brief description of the specific
processing that takes place within each module. Figure 25-12 gives an overview of the
fdb_manager processing. The sections that follow contain a detailed description of each module,
together with specific data flows and sequential logic diagrams.

The module Process Flight Messages receives parsed NAS, flight schedule, and feedback (FA)
messages from the Parser as well as EDCT messages from the EDCT Server. Process Flight
Messages first attempts to match the incoming message with one of the flights already in the
flight database. If the match is successful, Process Flight Messages uses the data contained in
the message to update the existing flight data in both the fdb and evdb. If no match is found,
Process Flight Messages assumes this is a new flight and allocates a new flight record and the
appropriate number of event blocks, adding the data contained in the message to the databases.
When necessary, Process Flight Messages uses the aircraft dynamics data, the grid winds data,
and the estimated ground times to predict when each event along the flight path will occur.

In addition to performing updates of the databases, Process Flight Messages also generates flight
update messages for the Flight Table Manager, event list update messages for the Traffic
Demands Database Processor, and FA messages for the Parser. It also maintains two supporting
data structures called time out arrays. These arrays are used by Remove Late Departures From
TDB and Time Out Flights From FDB to facilitate their respective processing.

Remove Late Departures From TDB sends delete flight transactions for late departing flights to
the Traffic Demands Database Processor (TDB). This module receives the current time from
NAS messages and accesses the Departure Time Out Array in order to determine which flights
need to be deleted from the TDB. As an adjunct to this processing, Remove Late Departures
From TDB also generates a time transaction, which contains the current NAS message time, for
the TDB.

ETMS System Design Document
Version 6.0

25-46

Initialize FDB

Begin

a b

FADT
Message?

Is this FDB a
slave?

Any FDB entries
with same
Flight ID?

Get message
from queue

Add new flight

Process FADT
Message

Process Cross
String Update

Process message
according to type

Send remove
transaction to TDB

if necessary

Time out previous
Flight legs

Do databases
need to be
updated?

Yes

Yes

No

No

Yes

Yes

No

No

Figure 25-12. Sequential Logic for the FDB_Manager Process

ETMS System Design Document
Version 6.0

25-47

Send TDB
transactions
if necessary

Is this FDB
a Master?

a b

Send data to
slaves

Do time array
processing

Send data to FTM
if necessary

No

Yes

Figure 25-12. Sequential Logic for the FDB_Manager Process (continued)

ETMS System Design Document
Version 6.0

25-48

Flight
Database

Process
Communication

Messages
25.14.1

Process
Flight

Messages
25.14.4

Time Out
Flights From

FDB
25.14.2

Remove Late
Departures
From TDB

25.14.3

NAS, OMP, Schedule, EDCT
and Feedback Messages

ARTCC Names

Aircraft Dynamics Data

EDCT Updates

V 4 Routes

Flight Updates

TDB Transactions

Feedback Messages

Cross String Updates

Flight
Addresses

Arrival Time
Updates

Old Flight
Data

Old Flight
Data

Delete Flag
Updates

DAS Flight
Information

Current
Time

TDB Delete and Time
Transactions

Current
Time

Flight
Addresses

New Flight
Data

Departure Time
Updates

Wind
Data

Parsed
Grid
Winds
Data

Config
Data

Stats

Raw Grid
Winds Data

Reconfigure
Commands

Communication
Messages Element Names

Ground
Time
DataGround Time

Prediction
Database

Grid Winds
Database

Arrival
Time Out

Array

FDB
Configuration
Data

Departure
Time Out

Array

Figure 25-13. Data Flow of the FDB Manager Process

Time Out Flights From FDB also receives the current NAS message time as input. The task of
this module is to determine which flights in the Flight Database are no longer in use. For this
purpose, Time Out Flights From FDB accesses the Arrival Time Out Arrays in order to
determine which flights should be deleted from the database. As flights are deleted, Time Out
Flights From FDB generates flight information messages, which are sent to the Ground Time
Prediction Server.
The module gridwinds_read is responsible for updating the grid winds database with winds aloft
data contained in raw grid winds data files. This module is triggered by messages from the
external weather server. When triggered, gridwinds_read parses the raw grid winds data file and
updates the grid winds database. The winds data is used by Process Flight Messages in order to
correct each flight's filed air speeds for the effects of winds.

ETMS System Design Document
Version 6.0

25-49

25.14.1 The Process Communication Messages Module

Purpose
The Process Communication Messages module is responsible for handling certain
communication events. These events include

• Notification that flight messages or grid winds updates are available

• Reconfigure or statistics requests are pending

• Communication timeout indicators

• Indicators of problems with child processes

The Process Communication Messages module determines which type of event has occurred and
what type of processing is necessary to handle it.

Input
From the node switch port, Process Communication Messages receives the grid winds update
input file name, reconfigure requests, and statistics requests. From the receive queue, it receives
flight messages from the Parser, and EDCT.

Output
Process Communication Messages may return a flight message to the calling routine or a
statistics reply to the requestor.

Processing Overview
The Process Communication Messages module consists of three sub-modules: GetNextMessage,
gridwinds_read, and comserver_timeout. Figure 25-14 illustrates the data flow among these
three modules.

The GetNextMessage module (see section 25.14.1.1) waits for a communication event to occur.
Depending on the event type, processing is as follows:

• node-switch event −− This indicates that one or more messages are available
from the node switch. GetNextMessage reads each message from the port, and
checks to see whether any of them are grid winds update messages. (These are
indicated by the word "aloft" at the beginning of the message, followed by the
name of the grid winds update file.) All grid winds update messages are processed
by module gridwinds_read (see section 25.14.1.2). Reconfigure and statistics
requests are processed by GetNextMessage with statistics responses sent back to
the requestor. All other types of messages in the port are ignored. This continues
until the port is empty.

• timeout event −− This type of event occurs when the node switch connection has
been severed, or when no node switch messages have been received within a

ETMS System Design Document
Version 6.0

25-50

certain time interval. These events are handled by the comserver_timeout module
(see section 25.14.1.3).

• receive-queue event −− This type of event indicates that a flight message from
the Parser or EDCT Processor is available in the receive queue. GetNextMessage
attempts to dequeue the message. If more than 0 bytes are retrieved, then it is
assumed that a flight message has been successfully received. This message is
returned to the calling routine.

• child-process-crashed event −− This type of event indicates that a child process
has died. GetNextMessage determines which process it was, and restarts it. If the
process has died and been restarted a great many times, a warning is displayed for
the operator. .

comserver_
timeout

25.14.1.3

Get Next
Message
25.14.1.1

gridwinds_read
25.14..1.2 Grid Winds

Database

FDB
Configuration

Database

NAS, OMP,
Schedule, EDCT
and Feedback
Messages

Raw Grid
Winds Data

Statistics
Reply

Reconfigure
Messages

Communication
Messages

Parsed
Grid
Winds
Data

Master Signals
(to other FDBs)

Mode(Master/ Slave)
Com status (connected/ not connected)

NAS, OMP, Schedule, EDCT
and Feedback Messages

Figure 25-14. Data Flow of the Process Communication Messages Module

25.14.1.1 The GetNextMessage Module

Purpose
The GetNextMessage module determines which type of communication event has occurred and
what type of processing is necessary to handle it.

ETMS System Design Document
Version 6.0

25-51

Input
GetNextMessage receives an indication of the type of event that has occurred. From the node
switch port, it receives the grid winds update input file name as well as reconfigure commands
and statistics requests. From the receive queue, it receives flight messages from the Parser and
EDCT Processor.

Output
GetNextMessage returns a flight message to the calling routine or a statistics reply to the
requestor.

Processing
Processing depends on the event type.

If it is a node-switch event, it is an indication that messages are available in the node switch port.
GetNextMessage reads each message from the port; messages which include grid winds input file
names are passed to the gridwinds_read module and the grid winds database is updated.
Reconfigure commands can be used to update the database. For statistics requests,
GetNextMessage produces a reply and sends it to the requestor. Any other type of message in the
node switch port is ignored. All available messages in the port are processed before checking for
other events.

If it is a timeout event, it is an indication that the node switch connection has been severed, or
that no network addressing messages have been received within a certain time interval. The
comserver_timeout module is invoked to handle the timeout processing.

If it is a receive-queue event, it is indication that a flight message from the Parser or EDCT
processor is available in the receive queue. GetNextMessage attempts to dequeue the message. If
more than 0 bytes are retrieved, then it is assumed that a flight message has been successfully
received. This message is returned to the calling routine.

If it is none of the above type of events and if the event type is within the defined set of
recognized event types, then it is an indication that a child process has died. GetNextMessage
determines which process it was, and restarts it. If the process has died and been restarted a great
many times, a warning is displayed for the operator.

GetNextMessage repeats this processing until it has successfully received a flight message.

See Figure 25-15 for a sequential logic diagram for this module.

ETMS System Design Document
Version 6.0

25-52

Invoke
comserver_timeout

module

Begin

Exit

Check net
connection

Re-initialize net
connection

Transition to
Slave mode

Notify the
operator

Invoke
gridwinds_read

module

Process
reconfigure/stats

requests Return
message to

calling routine

Restart the
child

process

Dequeue
message

Get next message
from the

node switch port

Wait for an
event to occur

Receive
queue
event?

Child
process
died?

Timeout
event?

Node switch
event?

Is it a
gridwinds file

name?

Message
size > 0?

Any more
messages in

port?

Connection
okay?

no no no no

yes yes yes yes

no yes

noyes

yes

no

yes

no

Figure 25-15. Sequential Logic for the GetNextMessage Module

ETMS System Design Document
Version 6.0

25-53

25.14.1.2 The gridwinds_read Module

Purpose
The gridwinds_read module is responsible for obtaining data from grid winds files and storing
that data into the grid winds database that is accessed by Process Flight Messages.

Design Issue: The Grid Winds Database
The grid winds database contains time-indexed winds data for fifteen altitude levels across the
greater continental United States. It is implemented as a mapped file, gwdb, consisting of two
distinct sections. The first section includes a control array of time records, a latitude array, a
longitude array, and various control fields. The control array acts as the time interface to the
winds data. The latitude array and the longitude array provide quick access to the boundary
points of the grid cells. Tables 25-1 and 25-2 provide detailed descriptions of the data structures
describing the first section of the mapped file. The second section, the data section, contains a
time-indexed array of winds data sets. Each data set is organized as a 3-dimensional array
indexed by 15 altitudes, 62 latitudes, and 81 longitudes. Each array element contains wind
direction and wind speed. Tables 25-3 through 25-5 provide detailed descriptions of the data
structures describing the second section of the mapped file.

The winds grid is based on a polar stereographic projection of the greater continental United
States. This projection has the characteristic that grid cell boundaries do not fall along lines of
equal latitude or longitude. This fact makes the problem of finding the grid cell corresponding to
a given latitude and longitude quite difficult. Because this type of lat/lon query is the only means
of access to the winds data, the search must be made simple and quick. This is accomplished in
the following manner.

The polar stereographic grid cell boundaries are converted to a Cartesian coordinate system
using the following conversion formulas:

 .

r = cot(45+lat/2)
x = r*sin(lon-lon0)
y = -r*cos(lon-lon0) where lon0 is -105.

The resulting (x, y) pair represents the converted (lon, lat) pair. All cells in a given column of the
winds grid have identical x values and all cells in a given row of the wind grid have identical y
values. During initialization, the FDB reads a file containing winds grid lat/lon intersection
points, converts these points to x/y values, and stores the series of x values in the gwdb longitude
array and the series of y values in the gwdb latitude array. These steps are illustrated in Figure
25-16.

A typical access to the winds database is accomplished by using the control array and input time
to determine the proper data set time index, converting a given (lon, lat) pair to its corresponding
(x, y) pair, searching the latitude array for the index corresponding to the x value, searching the
longitude array for the index corresponding to the y value, and using these indices along with an
altitude index to read the proper winds record.

ETMS System Design Document
Version 6.0

25-54

Table 25-1. Gw_header_t Data Structure

gw_header_t

Library Name: /atms/libraries/fdb_openlib

Element Name: gridwinds.h

Purpose:
This structure defines the first of two distinct sections in the grid
winds database. It is the header section which contains x/y coor-
dinate data as well as the time control array.

Data Item Definition Unit/Format Range Var. Type/Bits

control
Control array containing time
data

Array sorted by
start times 1..gw_max_periods

array of
gw_control_rec_t

default
Control structure containing in-
dices to most recent winds
data

Single record
gw_control_rec_t

y Array of latitude indicies Array of 62 con-
verted latitudes

array of float

x Array of longitude indicies Array of 81 con-
verted longitudes

array of float

lation_loaded Flag indicating whether y,x ar-
rays successfully initialized

T, F Boolean

winds_loaded Flag indicating whether winds
database contains any data

T, F boolean

Table 25-2. Gw_control_rec_t Data Structure

Gw_control_rec_t

Library Name: /atms/libraries/fdb_openlib

Element Name: gridwinds.h

Purpose:
This structure describes a control record which maintains time
data. The period index field is the time array index into the sec-
ond section of the grid winds database.

Data Item Definition Unit/Format Range Var. Type/Bits

time_update
The time that the file containing
this wind data was processed.

System clock for-
mat

CALTIME

start_clk The beginning of the time span
for which this data is valid.

System clock for-
mat

rounded to
nearest hour

CALTIME

end_clk The end of the time span for
which this database is valid.

System clock for-
mat

rounded to
nearest hour

CALTIME

exact_clk The center of the time span for
which this data is valid.

System clock for-
mat

rounded to
nearest half hour

CALTIME

start_mam The value of strat_clk above in
minutes.

Minutes elapsed
since Jan,1, 1980

INT32

end_mam The value of end_clk above in
minutes.

Minutes elapsed
since Jan.1, 1980

INT32

exact_mam The value of excat_clk above in
minutes.

Minutes elapsed
since Jan 1. 1980

INT32

period_index The time index into winds data
array related to this record.

Time array index 1.gw_max_periods short

valid_data Is the winds data for this time
period valid?

T, F boolean

input_file Name of the file that provided
winds data for this record.

Ascii string string80

ETMS System Design Document
Version 6.0

25-55

Table 25-3. Gw_header_t Data Structure

Gw_period_array_t

Library Name: /atms/libraries/fdb_openlib

Element Name: gridwinds.h

Purpose:
This structure defines the second section of the grid winds data-
base. This is the section that contains the actual winds data bro-
ken up by time.

Data Item Definition Unit/Format Range Var. Type/Bits

gw_period_array_t
Array of winds data sets. array

1.gw_max_periods
array of

gw_period_t

Table 25-4. Gw_period_t Data Structure

Gw_period_t

Library Name: /atms/libraries/fdb_openlib

Element Name: gridwinds.h

Purpose:
This structure contains a full set of winds data for a given time
range

Data Item Definition Unit/Format Range Var. Type/Bits

gw_period_t
3-deminsional array defining a
set of winds data

15 altitutdes. 62
latitudes, 81 lons

15x62x81
array of

gw_item_rec_t

Table 25-5. Gw_item_t Data Structure

Gw_item_t

Library Name: /atms/libraries/fdb_openlib

Element Name: gridwinds.h

Purpose:
This structure contains wind direction ans wind speed for a
single grid winds cell.

Data Item Definition Unit/Format Range Var. Type/Bits

wind_direction
Grid wind direction measured
in “to” redians.W->E=90deg.

radians
0 – 6.28 float

wind_speed Grid wind speed knots >=0 short

ETMS System Design Document
Version 6.0

25-56

Read
latitude

grid

Begin

End

Read
longitude

grid

Convert from
polar to

Cartesian

Open lat/lon file

Set latitude and
longitude arrays

in database

Print error

no

no

yes

yes

Successful
file open?

Good file
header?

Figure 25-16. Sequential Logic for the gridwinds_latlon Routine

Input
Gridwinds_read receives two types of input

(1) Messages from the communications interface containing a grid winds
filename. Receipt, normally occurring at 3-hour intervals, indicates that a
new raw grid winds file is available. The message contains the filename.

(2) The raw grid winds file itself. The file contains winds data separated into
30 unit grids. There are fifteen sets of grids. Each set corresponds to a
3000-foot altitude range and contains a direction grid and a speed grid.
Each grid contains 81 X 62 grid cells.

ETMS System Design Document
Version 6.0

25-57

Output
The gridwinds_read module stores wind direction and speed in the grid winds database used by
Process Flight Messages. The grid winds database structure is shown in Tables 25-1 through
25-5.

Processing
Gridwinds_read receives a gridwinds filename from the communications interface.
Gridwinds_read parses the message, extracting the gridwinds filename. The routine opens the
file, verifies its size, and reads the winds data into temporary storage grid by grid. It reads a
direction grid, then a speed grid for a single altitude level. It repeats the same process until
reaching 15 altitude levels.

Range checking is performed on the wind speed and direction data. A value of 99999 for wind
speed indicates that the file has no data for that particular wind cell. In such cases,
gridwinds_read stores a zero for the wind speed. If all grids are successfully read and verified,
Gridwinds_read converts the input filename into a time index and transfers the new winds data
from temporary storage to the appropriate location in the grid winds database. The processing
steps performed by Gridwinds_read are depicted in Figure 25-17.

Error Conditions and Handling
When gridwinds_read encounters an error in processing a winds file, it writes an error message
to the screen, and discards the entire winds file. The grid winds database remains unchanged.
The following is a list of errors:

(1) Unable to open grid winds file.

(2) Incorrect file size or header data.

(3) Direction or speed data out of bounds. Valid directions are 0-359 degrees (these
converted to radians for internal storage). Valid speeds are greater than zero.

ETMS System Design Document
Version 6.0

25-58

Print error

Begin

End

Open winds file

Transfer saved
data to gridwinds

database

Update header
data in gridwinds

database

Store speed
grid in temporary

location

Read and
validate

speed grid

Store direction
grid in temporary

location

Read and
validate

direction grid

Successful
file open?

Good file size
and header?

More altitude
sets?

Any errors
during read?

no

no

yes

no

yes

yes

yes

no

Figure 25-17. Sequential Logic for the gridwinds_read Routine

ETMS System Design Document
Version 6.0

25-59

25.14.1.3 The comserver_timeout Module

Purpose
The purpose of the comserver_timeout module is to determine whether the FDB should transition
from Master to Slave mode, or vice-versa.

Input
This module accesses the FDB global variables that indicate whether this FDB is in Master or
Slave mode.

Output
This module updates the FDB global variable that indicates whether this FDB is in Master or
Slave mode.

Processing
If the connection between the FDB and the node switch has been lost, then an attempt is made to
reconnect; otherwise processing depends on whether the FDB is in Master or Slave mode.

If the FDB is in Master mode when the timeout occurs, this module checks to see whether there
have been more than nine FDB Master pulse signals since the last TZ message was received
from the Parser. If so, the FDB transitions to Slave mode. If FDB did not decide to switch to
Slave mode, then it sends Master pulses to all other FDB Slave managers, as well as to the FDB2
on this string, and it also sends an AF message to the Parser to tell it to continue sending data. If
FDB was not able to send the Master pulses, then the FDB transitions to Slave mode.

If the FDB is in Slave mode when the timeout occurs, it attempts to verify that its net connection
is still valid. If it is not, then it attempts to reconnect. Otherwise, if cross-string messages are
still being received from the Master FDB, then the FDB stays in Slave mode but prepares to
transition to Master mode by notifying the Parser to start sending it data. If it is not receiving
data, then it transitions to Master mode; it notifies the Parser to start sending it data and it sends
out the Master pulses to the other FDBs.

After these checks have been performed, if the FDB's connection to the node switch is down, it
attempts to reconnect.

At the end of timeout processing, this module resets the timeout counter to one of two
user-defined values, depending on whether the FDB is in Master or Slave mode, and whether the
net connection is up or down.

See figure 25-18 for a logic diagram for this module.

ETMS System Design Document
Version 6.0

25-60

Verify net
connection

a

Begin

b b

a

a

Mode?

Still
getting
data?

Still good?

Stay in Slave
mode, but

tell parser to
start

sending data

Send Master
signals,

incrementing
pulse count

every 6th time

Tell parser to
start

sending data

Send Master
signals

Switch to
Master mode

Switch to
Slave mode

Tell parser to
continue

sending data

Check net
provider

connections

Connected
to netport?

More than
9 master pulses
since last TZ?

Sent Master
signals

OK?

no

yesno

yes

no

yes

no

SlaveMaster

no

yes

Figure 25-18. Sequential Logic for the comserver_timeout Module

ETMS System Design Document
Version 6.0

25-61

Set the timeout
value to the

Master timeout
limit

Connected
to netport?

a

End

b

Connected
to netport?

Mode?

Attempt to
reconnect?

Save the timeout
value to the

Slave timeout
limit

yes

no

Master Slave

no

yes

 Figure 25-18. Sequential Logic for the comserver_timeout Module (continued)

ETMS System Design Document
Version 6.0

25-62

25.14.2 The Time Out Flights From FDB Module

Purpose
The fdb_manager process is designed to run ad infinitum, maintaining a database of all current
and proposed flights in the NAS. Since this process runs on a computer that has some finite
amount of memory, the design must include some way to reuse memory.

The module Time Out Flights From FDB addresses this requirement; it frees up memory by
deallocating slots, each of which contains information about one flight. Time Out Flights From
FDB reallocates a slot by marking the record as available for reuse by Process Flight Messages.
It deallocates a slot when it determines that no further messages will be received affecting the
flight in that slot. This determination is made by comparing the arrival time of the flight with the
current time.

Design Issue: the Time Out Array
The manner in which Time Out Flights From FDB uses the flight's status and arrival times to
schedule the flight's slot for deallocation is illustrated in Figure 25-19. Time-out arrays hold
linked lists of addresses of flight slots in time order such that each linked list is associated with a
particular time interval. Arrays (one for each flight status) are used to group flights into
15-minute intervals by status and arrival time. The arrival time is converted into a time interval
number. This number is used as the subscript of the array element in which a linked list resides.
The linked list includes the address of the flight slot.

ETMS System Design Document
Version 6.0

25-63

address

address

addressaddress

address
time interval 1

time interval 2

time interval 3

time interval 4

time interval 5

time interval n-1

time interval n

flight record 1

flight record n

flight record n-1

flight record n-2

flight
data
base

flight record 3

flight id arrival
time

other data

Figure 25-19. A Time Out Array Relates the Arrival Time to a Flight’s Address

Input
Time Out Flights From FDB receives the following input:

(1) Current time as determined from the time stamps of incoming NAS messages.

(2) Old flight data from the flight database.

(3) Flight addresses from the arrival time-out arrays.

Output
Time Out Flights From FDB creates as output:

(1) Flight header records and event data blocks which have been marked as deleted.

(2) DAS flight message transactions for each flight that is deleted.

ETMS System Design Document
Version 6.0

25-64

Processing Overview
Time Out Flights From FDB (shown in Figure 25-20) uses the time out arrays described in the
previous section to decide when flight data is no longer needed. Time Out Flights From FDB
removes flights from the main databases (the FDB and EVDB) and from the supporting data
structures (time out arrays and hash table) during Delete Old Flights processing. Delete Old
Flights then supplies the addresses of flights to be deleted to Generate DAS Flight Messages.
This module generates a deleted flight information transaction for the Ground Time Prediction
server.

25.14.2.1 The Delete Old Flights Module

Purpose
The purpose of Delete Old Flights is to determine a time interval range for which flights should
be deleted and then delete those flight records whose arrival times fall within that range. This
module also passes deleted flight addresses to Generate DAS Flight Messages and, if enabled,
will also save deleted flight information to a disk file.

Generate
DAS Flight
Message

Delete Old
Flights

Crash
File

Arrival
Time-Out

Arrays

Flight
Data
Base

Flight Slot
Addresses

“Deleted” Flight
and Event Records

Current Time Old Flight
Data

Last Delete
Time

Deleted Flight
Addresses

DAS Flight
Messages

 Figure 25-20. Data Flow of the Time Out Flights From FDB Module

ETMS System Design Document
Version 6.0

25-65

Input
Delete Old Flights receives as input:

(1) Flight slot addresses − addresses (offsets into the map file) from the time-out
arrays for all flights to be deleted

(2) Current time − from the last NAS message received

(3) Time when flights were last timed out − this time was saved when flights were
last timed out.

Output

Delete Old Flights produces the following output:

(1) Updates to the FDB and EVDB − mark the flight record header and flight event
blocks as deleted; delete flight entry from the hash table and arrival time-out
array.

(2) Time when flights were last timed out − update the previous value in the crash file
upon completion of Delete Old Flights.

Processing
Delete Old Flights first calculates the time interval number associated with the current time. It
then compares this interval number with the interval number when flights were last timed out. If
the current time interval is greater than the last time-out interval, Delete Old Flights then
calculates a range of time intervals for which flights should be timed out. This interval range
goes from two hours before the last time-out interval until one hour before the current interval.
After calculating the interval range, Delete Old Flights traverses each of the time-out arrays,
performing a number of steps for each flight.

If the fdb_manager process was invoked with the -d switch (see Section 25.14 for a complete
description of fdb_manager process execution control), Delete Old Flights first sends deleted
flight information to a disk file. Delete Old Flights then passes each flight record address to
Generate DAS Flight Messages (see Section 25.14.2.2), which generates a deleted flight
transaction for the Ground Time Prediction server. Next, Delete Old Flights updates the fdb,
evdb and all supporting data structures through the following steps:

(1) Delete each of the flight's event blocks by setting the distance field in the first
event for each block to -1.

(2) Remove the flight's entry from the hash table.

(3) Remove the flight's entry from the time array.

(4) Delete the flight record header by setting its deleted field to TRUE.

After processing each of the flights in the calculated time-out array interval range in this manner,
Delete Old Flights records the current time in the crash file as the time when flights were last
timed out.

ETMS System Design Document
Version 6.0

25-66

Error Conditions and Handling
During the course of processing a given flight, Delete Old Flights could encounter corrupted data
in the fdb, evdb, the hash table or the time-out arrays themselves. Depending on which of these
structures is corrupted, and in what manner, Delete Old Flights takes different courses of action.

No provision is made within the code for checking legal address bounds. The severity of these
types of errors will be fatal; a fault traceback for the current point of execution will be saved in
the main fdb_manager transcript pad, and the program will terminate.

Lower severity errors include redundant entries for a flight in the time-out arrays or inclusion of
previously deleted flights within that data structure. In each case, an error message will appear in
the main fdb_manager transcript pad indicating the nature and location of the error. If applicable,
information on the offending flight will also be displayed. Errors which indicate corruption of
either the fdb or evdb will result in termination of Delete Old Flights processing. Processing will
continue for errors detected in the supporting data structures.

25.14.2.2 The Generate DAS Flight Messages Module

Purpose
Generate DAS Flight Messages prepares flight information and route event data to be sent to the
Ground Time Prediction System.

Input
The input for Generating DAS Flight Messages is a flight address. Depending on a flight status,
the Process Flight Data determines which array to be used to get a flight address.

Output
The output of the Generate DAS Flight Messages module is a DAS Flight Message. This DAS
Flight Message consists of message type, flight record, and event lists. The fdb_das interface
data structure, which is used for this message, is shown in Table 25-6.

Table 25-6. fdb_das_interface_t Data Structure

fdb_to_das_t

Library Name: /atms/libraries/gtp_openlib

Element Name: fdb.das.h

Purpose:
To store information to be shipped from the FDB to the Ground
Time Prediction

Data Item Definition Unit/Format Range Var. Type/Bits

flight _record
The record containing all infor-
mation about a flight.

A C structure
flight_db_type

event_list The path of this flight in terms
of elements it crosses.

A C structure ev_list_array_t

ETMS System Design Document
Version 6.0

25-67

Processing
When a flight is timed out from the Flight Database, Generate DAS Flight Messages uses the
flight record address to extract flight record and event list information for each flight. Generate
DAS Flight Messages packs the flight information and sends it, along with event list data, to the
DAS Relay, which forwards each DAS Flight Message to the Ground Time Prediction System. If
there are no events for the flight, the Generate DAS Flight Messages does not generate any
information.

Error Conditions and Handling
Errors cause an error message to appear in the main process window of the ETMS system
operator's node.

25.14.3 The Remove Late Departures From TDB Module

Purpose
Remove Late Departures From TDB monitors scheduled and proposed flights for delayed
departures. This is done so that flights which are very late in departing do not affect traffic
demands in the TDB. Information about such flights is removed from the TDB approximately
five minutes after the scheduled/proposed departure time. The flight state and route information
is retained in the FDB, however. If another message is received updating the status of that flight,
its route information is added once again to the TDB. If no such message is received, the flight
will eventually be removed from the FDB as described in Section 25.14.2.1.

Input

Remove Late Departures From TDB receives as input:

(1) Current time −− This is the time stamp from the last NAS message received.

(2) Flight addresses −− Obtained from the departure time-out array (identical to the
arrival time-out arrays described in Section 25.14 except that the array subscript is
related to departure time); used to access flight departure times and determine
which flights need to be removed from the TDB.

(3) Flight data −− Obtained from the fdb and evdb, used to generate a delete
transaction for those flights which are to be removed from the TDB.

Output
Remove Late Departures From TDB generates as output:

(1) TDB transactions −− Delete transactions for flights whose departure has been
delayed and a time transaction that contains the current time.

(2) FDB record updates −− Each FDB record that is deleted from the TDB is marked
to indicate the lack of a TDB entry for that flight.

ETMS System Design Document
Version 6.0

25-68

Processing
Remove Late Departures From TDB compares the current time to the time when flights were last
timed-out from the TDB. If at least one minute has elapsed, Remove Late Departures From TDB
then calculates a time interval range for which flights should be timed out. This interval range
starts one interval before the last time-out interval and ends with the current interval. Remove
Late Departures From TDB then traverses the departure time-out array and times out any flights
whose departure is at least five minutes before the current time. As candidate flights are located,
Remove Late Departures From TDB generates a delete transaction buffer and enqueues that
buffer for transmission to the TDB by the TDB Relay. Finally, Remove Late Departures From
TDB generates a time transaction buffer containing the current time and enqueues that buffer for
transmission to the TDB.

Similar to the removal of flights from the FDB, if the -d switch was enabled when the
fdb_manager process was started, Remove Late Departures From TDB will send deleted flight
information to a disk file.

Error Conditions and Handling
When a flight whose status is not filed, scheduled, or controlled is found in the departure time
array, an error message containing information about the offending flight is sent to the main
fdb_manager process transcript pad. The incorrect entry is ignored, and array processing
continues.

An error which occurs while enqueueing a transaction to the TDB will result in a fatal execution
error. The fdb_manager process and all child processes will terminate, and a program
traceback will be written to the transcript pad.

25.14.4 The Process Flight Messages Module

Purpose
Process Flight Messages receives parsed NAS, OMP, and flight schedule messages from the
Parser and parsed EDCT messages from the EDCT Server. Process Flight Messages updates the
Flight Database with data from these messages. It also predicts flight times and generates output
flight messages for the Traffic Demands Database Processor and the Flight Table Manager.
While performing these tasks, Process Flight Messages maintains the time-out arrays used by
Delete Old Flights and Remove Late Departures From TDB and the hash table used to perform
flight matching.

Design Issue: the Hash Table
In order to facilitate matching of the flight IDs contained in messages to those in the Flight
Database, Process Flight Messages utilizes the hashing function and hash table depicted in
Figure 25-21. This hashing function converts the flight ID for each message into an index to a
hash bucket in the hash table. The hash bucket is a linked list of hash table records
(hashtab_rec_t; see 25-7), each of which contains the address of the flight's record in the FDB,
the flight ID, and the flight's status (active, proposed, etc.).

ETMS System Design Document
Version 6.0

25-69

When Process Flight Messages receives a message, it calculates the index of the hash bucket for
the flight ID in the message. Process Flight Messages then traverses the bucket's list of hash
table records for FDB entries with the same flight ID. Each hash table record with the matching
flight ID is stored in an output list, which is sorted by flight status before being sent to the
appropriate message processing module.

hash table record

hash table record

hash table recordhash table record

hash table record

hash bucket 1

hash bucket 2

hash bucket 3

hash bucket 4

hash bucket 5

hash bucket n-1

hash bucket n

flight record 1

flight record n

flight record n-1

flight record n-2

flight
data
base

flight record 3

flight id other data

Flight ID
Hashing

Figure 25-21. A Hashing Function and Hash Table Relates Flight ID to Address

ETMS System Design Document
Version 6.0

25-70

Table 25–7. hashtab_rec_t Data Structure

hashrecord_t

Library Name: fdb_openlib Element Name: hash_structure.h

Purpose: to store information in hash table linked list

Data Item Definition Unit/Format Var. Type

fdboffset Offset of flight record into
fdb map file.

Number of bytes from beg.
of map file (0 to
MAXFDBOFFSET)

INT32

nxtoffset Pointer to next hash table
record in linked list.

- INT32

flight_id Flight identification. 1 3 chars followed by
numbers

string7

fstatus Status of the flight. Enumerated type: filed,
active, etc.

status _of_flight

Upon receiving a flight message for which there does not exist a current FDB entry, Process
Flight Messages adds the flight message information to a new entry in the FDB. At that time,
Process Flight Messages hashes the flight's ID into an index and inserts a new hash table record
for this flight into the linked list corresponding to the computed index.

Input

(1) Parsed NAS messages −− These contain the flight state and route data that have
been drawn from NAS messages by the Parser. The data available in these
messages can be found in Section 6. Process Flight Messages processes
information from the parsed results of the following types of NAS messages:
Departure (DZ), Arrival (AZ), Cancellation (RZ), Flight Plans (FZ), Boundary
Crossing (UZ), Position Update (TZ), and Amendment (AF). Parsed DZ, AZ, and
RZ messages contain flight state data. The parsed FZ and UZ messages usually
include the event list representations of flight routes. Parsed TZ messages contain
the last reported position, altitude, and speed of flight. Parsed AF messages might
contain some combination of flight state and route data. Each message notes the
time the ETMS received it.

(2) Parsed flight schedule messages −− These contain the flight state data and route
data that have been extracted by the Parser from the Schedule
Database-generated, flight schedule messages. The data available in these
messages can be found in Section 6. There are two types of flight schedule
messages for which the Parser sends data to Process Flight Messages: the FS
(flight schedule) and the RS (cancel scheduled flight) messages. The parsed FS
messages usually include the event list representations of flight routes.

(3) Parsed EDCT messages −− These contain the flight state data that have been
extracted by the EDCT Server from the data files which comprise an Air Traffic
Control System Command-generated ground delay program. Most importantly,

ETMS System Design Document
Version 6.0

25-71

each parsed EDCT message contains the identification of the flight to be ground
delayed, its departure airport, and its new controlled departure time. Section 6
contains more information about the EDCT messages.

(4) Parsed OMP messages −− These contain position updates for oceanic flights
outside of CONUS radar coverage from the OMP. The data available in these
messages can be found in Section 6. Process Flight Messages processes
information from the parsed results of these Oceanic Position Update (TO)
messages.

(5) Aircraft dynamics data −− The aircraft dynamics data includes information about
the flight characteristics (speed, altitude, and rate of descent) of various types of
aircraft. Section 23.1 contains more information about these aircraft dynamics
data.

(6) Element names −− Process Flight Messages obtains element names from the
element name file, which maps an element's type and index to its name. A more
detailed description of the element name file can be found in Section 19.

(7) Wind data −− Process Flight Messages gets wind speed and direction from the
Grid Winds Database, which is created by the gridwinds_read module (Section
25.14.1.2). The Grid Winds Database maps a geographic position and altitude
into the wind speed and direction at that position.

(8) Old flight data −− Process Flight Messages receives old flight data from the
flight database (Section 25.14). These data consist of the latest information about
a flight before the current message has been processed. These data include the
latest event list (including times), flight status, last actual event, and other
flight-specific information.

Output
Process Flight Messages generates the following output:

(1) New flight data −− As Process Flight Messages successfully processes each
input message, it writes the resulting new flight data to the Flight Database. This
new data includes a new event list (with new times), new flight status, and other
flight-specific information.

(2) Departure time updates −− These post-message processing updates to the
departure time-out arrays include the flight's latest departure time, status, and
address in the flight database.

(3) Arrival time updates −− These post-message processing updates to the arrival
time-out arrays include the flight's latest arrival time, status, and address in the
flight database.

(4) TDB transactions −− Event list and time information, used by the Traffic
Demands Database Processor to track demands at NAS elements.

ETMS System Design Document
Version 6.0

25-72

(5) Flight update messages −− Flight update information sent via the FDB Distributor
to the Flight Table Manager for use by the TSD and route messages in version 4.2
format for the ASDI link.

(6) Feedback messages −− FA messages containing information gathered from NAS
AF messages and information contained in the Flight Database.

Processing Overview
The Process Flight Messages module is made up of the following five modules: Update FDB
With Message Data, Compute Flight Times, Merge Event Lists, Generate Route Information, and
Send TDB Transactions. The data flow between these modules is shown in Figure 25-22.

Generate Flight
Update

Information

Compute Flight
Times

Update FDB With
Message Data

Merge Event
Lists

Send TDB
Transactions

Aircraft Dynamics Data,
Ground Time Prediction Data,
Wind Data

Element Names
ARTCC Names

Individual NAS,
OMP, Schedule,
EDCT or Feedback
Message

New Message
Data

New Flight
Times

New, Old Event Lists

Merged Event List

Old Flight
Data

New Flight
Data

Arrival Time
Updates

Departure Time
Updates

TDB Transactions

Old Flight
Data

New Flight
Data

Old
Flight Data

New Flight
Data

V 4 Routes

Flight Updates

Figure 25-22. Data Flow of the Process Flight Messages Module

Depending on the type of message being processed, the Process Flight Messages module may
not perform all functions described by the modules shown in Figure 25-22. However, this data
flow diagram and the flow chart in Figure 25-23 describe the processing in general terms.

ETMS System Design Document
Version 6.0

25-73

Generate
Flight Update

Message

Begin

End

Merge
Needed?

Create New
FDB Entry

Merge Event
Lists

Compute
Flight Times

Update Time
Out Arrays

Look for
Matching

Entry

Put Latest
Flight Data
Into FDB

Send TDB
Transaction

Find an
Entry?

Yes Yes No

No

Figure 25-23. Flow Chart for Process Flight Messages

ETMS System Design Document
Version 6.0

25-74

In general, the Process Flight Messages module processes NAS, OMP, EDCT, flight schedule,
and FA messages in a manner as described in the flow chart . The Process Flight Messages
module first dequeues a message which had been received by the FDB Receiver process. Process
Flight Messages uses identifying information from the message (e.g., flight identification,
departure and arrival airports) and a hash table to find a matching flight from the flight database.
A description of the hash table is described in this section as a Design Issue.

If Process Flight Messages does not find a matching flight in the flight database, it creates a new
slot in the flight database and fills the slot with information from the input message. If a
matching flight is found, Process Flight Messages merges the data from the message into that
flight's record. For messages with event lists, Process Flight Messages merges the new event list
with the one existing in the flight database. Event-list merging is described in Section 25.14.4.2.

In either case (a match is found or not found), if the flight has an event list, Process Flight
Messages computes the times of the flight at each of these events. This time computation is
described in detail in Section 25.14.4.1. Process Flight Messages places the new or merged flight
data, which includes the new times, into the flight database. The time-out arrays, described in
Section 25.14.2, are updated using the new flight times.

For most message types, Process Flight Messages generates a TDB transaction which directs the
Traffic Database Processor to add, replace, or delete this flight in its traffic demand counts
database. The generation and transmission of these TDB transactions is described in Section
25.14.4.3. Process Flight Messages generates flight update messages which are sent to the FTM.

The general description of Process Flight Messages accompanying Figure 25-23 highlights
processing performed in the case of some (sometimes all) message types. Yet, Process Flight
Messages actually performs different functions depending on the type of message being
processed. These message-specific modules (Do_FZ, Do_UZ, Do_DZ, Do_RZ, Do_AZ, Do_AF,
Do_TZ, Do_TO, Do_FS, Do_RS, Do_EDCT) are described in the sections following the
descriptions of the shared design issues and processing.

25.14.4.1 The Compute Flight Times Module
The Compute Flight Times module supports the main task of the FDP : the prediction of times for
each event in a flight's event list. Compute Flight Times is itself a loose group of modules and
routines that are applied selectively by each message processing module. The one exception is
computation of flight times for position update (TZ) messages. Due to its complex nature, the TZ
message processing module (Do_TZ) utilizes its own internal flight times computation routines,
described in Section 25.14.4.5.6.

Under most circumstances, most message processing modules compute future flight times along
the event list through the ModelFlight module (see Section 25.14.4.1.1). Two of ModelFlight 's
supporting routines, groundspeed_with_winds (Section 25.14.4.1.2) and get_time_value (Section
25.14.4.1.3) are used respectively to supply winds-modified air speeds and flight-profile
dependent event times.

One exception to the use of Modelflight for event times computation is found for all DZ
(departure) messages, all EDCT (departure control time) messages, and proposed AF (flight plan
amendment) messages which only request a change to the flight's departure time. These message
types use the routine add_event_list_delta_time to more efficiently update event times.

ETMS System Design Document
Version 6.0

25-75

Add_event_list_delta_time takes as input an event list, a delta time value, and a time type for the
first event in the event list. It supplies as output an event list in which all times have been
modified by the same value. Processing begins by placing the time type into the first event. The
routine then traverses the entire event list, adding the delta value for each event in the event list.

Another such exception to the use of Modelflight is made for event lists where the message's
coordination fix event is after the last actual event in the event list. UZs (boundary crossings),
AF/FAs (flight plan amendments), active FZs (flight plans) and AZs can all fall into this
category. For this instance, another event time computation algorithm is used to locate the
coordination fix event in the event list and interpolate times for those events which are in the
past. This module, called interpolate_previous_flight_times, is described in Section 25.14.4.1.4.

25.14.4.1.1 The ModelFlight Module
ModelFlight receives four types of input:

(1) Event list −− This list is a representation of a flight. Each event contains data
describing the intersection of the flight with a NAS element.

(2) Aircraft dynamics data −− These data include the aircraft type, the ascent and
descent profile, and other information such as altitude and speed of the flight.

(3) Winds data −− Contains wind data at fifteen different altitude levels by latitude
and longitude over the contiguous United States.

(4) Flight start time −− This time is used as the time of the last non-modeled event in
the list. Each subsequent event time is modeled with respect to this time. Usually,
this time is a flight's departure time and is assigned to the first event in the list.

ModelFlight 's output consists of a modeled event list, which is identical to the input list, except
for the addition of event times.

Model Flight begins its processing by assigning a start time to the appropriate event in the list. It
then predicts the times of all subsequent events in the following manner: for each event,
ModelFlight extracts the previously computed distance between this and the previous event. For
scheduled and proposed flights, if an event occurs during the en route phase of the flight,
Modelflight uses the groundspeed_with_winds (see Section 25.14.4.1.2) routine to predict a
winds modified ground speed for the event. ModelFlight then passes the computed distance
value, along with the aircraft dynamics data and new ground speed, to the function
get_time_value. The function get_time_value (see Section 25.14.4.1.3) uses the supplied data to
determine the time of flight between this and the previous event. ModelFlight adds this relative
time to the absolute time extracted from the previous event. The resulting absolute time is then
included in the data structure that makes up the current event. This process is repeated for each
event.

ETMS System Design Document
Version 6.0

25-76

25.14.4.1.2 The groundspeed_with_winds Routine
Groundspeed_with_winds takes as input the flight's location for an event (latitude, longitude and
altitude), its heading, its filed airspeed, and the time for the flight's previous event.

It returns as output a winds modified ground speed value based on the filed airspeed and the
current wind value at the specified location and time.

In order to access the grid winds database, Groundspeed_with_winds converts the latitude,
longitude, altitude, and time input parameters into grid winds database (GWDB) indices. The
indices are generated in the following manner:

(1) Groundspeed_with_winds applies the formulas described in Section 25.14.1.2 to
convert the longitude and latitude coordinates into Cartesian x and y values. It
then performs binary searches on the GWDB x and y arrays to locate the array
indices corresponding to the x and y values.. These array indices are the GWDB
indices for the lat/lon.

(2) The routine searches an array of altitudes to find the index corresponding to the
input altitude. Altitudes greater than the maximum altitude (flight level 450) are
assigned the maximum altitude index.

(3) Groundspeed_with_winds compares the input time with those contained in the
GWDB time control array. It locates the control record nearest in time to the input
time and extracts the GWDB data set index from the control record.

If all the indices are within range, groundspeed_with_winds extracts the wind direction and wind
speed from the grid winds database. Groundspeed_with_winds then applies a vectorial approach;
it first calculates a modified heading for the flight based on the wind and the desired direction of
travel. It then projects the airspeed along this modified heading to obtain a prediction of the
flight's actual speed relative to the ground.

If, due to an error in the winds data or the flight's airspeed, the ground speed predicted by
groundspeed_with_winds is less than 10% of the filed airspeed, the routine returns an error and
discards the modeled ground speed value.

25.14.4.1.3 The get_time_value Routine
Get_time_value computes the flight time by first considering the vertical flight orientation (i.e.,
ascending, flying level, or descending) of the previous and the current flight event. The time leg
of each orientation stage is computed with its own data structures. Since there are three
orientations and two flight events, there are six possible combinations, as shown in 25-8.

ETMS System Design Document
Version 6.0

25-77

Table 25-8. Flight Orientation Combinations

Previous Event Current Event
ascending ascending
ascending flying level
ascending descending

flying level flying level
flying level descending
descending descending

The get_time_value routine uses the flight phase, altitude, speed, and distance along the flight
path at two sequential events to model the time, in minutes, between the two events. ModelFlight
calls this procedure (see Section 25.14.4.1.1) at each flight event along the flight path. These
two routines communicate data via the flight record, the structure of which is described in Table
25-9.

ETMS System Design Document
Version 6.0

25-78

Table 25-9. Flight Record Data Structure

Flight Record

Library Name: Profile_openlib Element Name: Profile.h

I/O by function+Data
Item Definition Unit

Legal
Range

Var.
Type F_1 F_2 F_3

 flt_id
 flight identifier (e.g.,
AAL123)

 array[1…10]
of char | -- --

 filed_fz_onground

 indicates disposition of
the filed Field 10
Field 10 filed on grnd=T
Filed in air=F

 T or F

 Boolean

 |

 --

 --

 civ
 indicates if the aircraft is
civilian=T or military=F T or F Boolean O | --

 runaway

 indicates that flight
errors or inconsistencies
are severe & fatal=T
 No major problem=F

 T or F

 Boolean

 O

 --

 --

 dsg_actual
 actual designator taken
from the FZ

 array[1…4]
of char

 | -- --

 aircraft_index

 index indicating a record
in the Aircraft_Descriptor
Map which describes the
given flight

 -1 to

 max_plane_type

 short

 O

 --

 --

 dsg_index

 index indicating the par-
ticular template aircraft
assigned to this flight

 1 to tot_tem-
plates

 short

 O

 |

 |

 ascent_index

 index indicating the par-
ticular ascent profile for
this flight

 1 to
max_ascent_pro

-files

 short

 O

 |

 |

 descent_index

 index indicating the par-
ticular ascent profile for
this flight

 1 to
max_descent_

profiles

 short

 O

 |

 |

 dist_total
 total distance for this
flight

 nautical
miles

 INT32 | | |

 origin_lat
 latitude of the originating
airport radians float | | |

 origin_lon
 longitude of the
originating airport radians float | | |

 dest_lat
 latitude of the destina-
tion airport radians float | | |

 dest_lon
 longitude of the destina-
airport radians float | | |

 dist_cruz

 distance from the takeoff
roll to the point at which
the aircraft achieves
cruising altitude

 nautical
miles

 INT32

 O

 |

 |

 spd_cruz

 cruising speed for this
flight

 (nautical
miles/min)

x 100
 INT32

 |/O

 |

 |

 alt_cruz

 cruising altitude for this
flight

 feet/100 INT32

 |/O

 |

 |

+ F_1 indicates Assign_A_Profile, F_2 indicates Get_Altitude_Values, F_3 indicates Get_Time_Value

ETMS System Design Document
Version 6.0

25-79

Table 25-9. Flight Record Data Structure (continued)

Flight Record (continued)

Library Name: Profile_openlib Element Name: Profile.h

I/O by function+Data
Item Definition Unit Legal

Range
Var.
Type F_1 F_2 F_3

 dist_descent

 distance from the begin
descent point to the
point where the aircraft
touches down

 nautical
miles

 0 to 160

 INT32

 O

 |

 |

 previous.time

 accumulated time from
takeoff roll to the pre-
vious location of this
flight

 minutes

 float

 --

 --

 |

 previous.lat
 latitude at the previous
location of this flight radians float O | |

 previous.lon
 longitude at the previous
location of this flight radians float O | |

 previous.dist
 previous distance along
the flight path

 nautical
miles

 INT32 O | |

 previous.phase

 flight phase at the pre-
vious location for this
flight

 flight phase
see Sec.15

 O

 |

 |

 previous.alt
 altitude at the previous
location for this flight feet/100 0 to 600 INT32 O | |

 previous.speed

 speed at the previous
location for this flight

 (nautical
miles/min)

x100

 INT32

 O

 |

 |

 now.time

 flying time from the pre-
vious location to the cur-
rent location

 minutes

 float

 --

 --

 O

 now.lat
 latitude at the current
location of this flight radians float | | |

 now.lon
 longitude at the current
location of this flight radians float | | |

 previous.dist
 current distance along
the flight path

 nautical
miles

 INT32 | | |

 now.phase
 flight phase at the cur-
rent location of this flight

 flight phase
see Sec. 15

 O O |

 now.alt
 altitude at the current
location for this flight feet/100 0 to 600 INT32 O O |

 previous.speed

 speed at the previous
location for this flight

 (nautical
miles/min)

x100

 INT32

 O

 |

 |

 no_descent

 indicates whether or not
the descent is modeled.
ne_descent_modeled=T
descent is modeled=F

 T or F

 Boolean

 |

 |

 |

 no_descent

 indicates whether or not
the flight must land on
this call. Must land
 now=T, not land now=F

 T or F

 Boolean

 |

 |

 |

+ F_1 indicates Assign_A_Profile, F_2 indicates Get_Altitude_Values, F_3 indicates Get_Time_Value

ETMS System Design Document
Version 6.0

25-80

Get_time_value computes the time legs appropriate to the flight event combination and totals
them to produce a flight time interval. The time leg computations are described in the following
paragraphs.

During ascent, the flying time is computed using the distances, the ascent index, and the ascent
maps. The value of the previous.distance is used to find an accumulated time value from the
ascent_by_dist map. Similarly, if the current distance (i.e., now.distance) is within the ascent
stage, that distance is used to find a second time value. The time interval between the previous
point and the current point is computed as the difference between the two accumulated time
values. If the current.distance is beyond the leveling out point (i.e., dist_cruz), the value of
dist_cruz is used to find the second accumulated time value. The difference between dist_cruz
and the current.distance is divided by the cruise speed to compute the level time leg. The total
time interval represents the sum of the ascent and level time legs.

When a flight is flying level, the flying time computation is not quite as simple. If the previous
and current events occur in the same phase, the time is calculated by dividing the common speed
into the difference between the previous and now distances. However, if the previous event
occurs in the level_out phase (i.e., within the original Terminal Control Area [TCA]) and the
current event occurs en route, the procedure considers the previous and current aircraft positions
and speeds, as well as the TCA boundary, to estimate the time of that leg.

For jet aircraft the times for descent segments are computed similarly to the ascent segments.
The previous and current distances are used to find time values from the descent_by_dist map.
The difference between the two time values produces the descent time leg.

Since the speeds of propeller-driven aircraft vary considerably, these aircraft are modeled
somewhat differently. There is only one descent profile for all propeller-driven aircraft; this
profile constitutes the fastest of the propeller-driven planes. When the value of the cruise speed is
below the values of the descent profile, the time for that portion of the descent is computed using
the cruise speed and distance. When the cruise speed is above the profile speed (i.e., closer to
the destination airport) the time values extracted directly from the map are employed to compute
the descent time leg. The descent times are computed by a procedure named get_descent_time,
which is called by get_time_value. See Figure 25-24 for an illustration of the logic used in
get_time_value and Figure 25-25 for the logic used in get_descent_time.

25.14.4.1.4 The interpolate_previous_flight_times Module
This module is used when message processing requires the computation of flight times for events
that are in the past (based on the value of the message's coordination fix event). There are two
possible processing methods depending on the message type.

In the case of an AZ (arrival) message, the location of the coordination fix in the event list is
known (the last event). Therefore, the previous flight times computation traverses the event list
from the last event to that last actual or proposed event. Interpolate_previous_flight_times first
examines the event list to make sure that a previous proposed or actual time exists. If the
previous time is proposed, the interpolate_previous_flight_times applies a delta time to each
event from the previous event to the current event. If the previous time is actual, a distance
weighted time value is entered for each event from the previous event to the current event.

ETMS System Design Document
Version 6.0

25-81

Look up time value 1 from the ascent_by_dist map
using the previous distance

Look up time value 2 from the ascent_by_dist map
using the value of dist_cruz

Set the ascent time leg to (time value 2 – time value 1)
Set the level time leg to (current dist – dist_cruz)

divided by the current speed
Set the current time to the sum of the ascent time leg

and the level time leg

End

End

Start

a

Look up time value 1 from the ascent_by_dist map
using the previous distance

Look up time value 2 from the ascent_by_dist map
using the current distance

Set the current time to (time value 2 – time value 1)

Is the
previous phase

= take_off or climb
and

the current phase =
take_off or climb

?

Is the
previous phase

= (take_off or climb)
and

current phase
= enroute

?

Is the
previous phase

= take_off
and

current phase
= level_out

?

no

no

no

yes

yes

yes

Figure 25-24. Sequential Logic for get_time_value Routine

ETMS System Design Document
Version 6.0

25-82

Compute distance 1, the distance from the previous aircraft
position to the TCA boundary.

Compute distance 2, the distance from the TCA boundary
to the current position.

Set the current time to the sum of (distance 1 / prev. speed
+ (distance 2 / current speed)

a

End

End

b

Look up time value 1 from the ascent_by_dist map
using the previous distance

Look up time value 2 from the ascent_by_dist map
using the value of dist_cruz

Set the ascent time leg to (time value 2 – time value 1)
Set the level time leg to (current dist – dist_cruz)

divided by the current speed
Compute the descent time leg using the descent_time_value

procedure
Set the current time to the sum of the ascent time leg

the level time leg and the descent time leg

Is the
previous phase

< enroute
and

current phase
> enroute

?

Is the
previous phase

= level_out
and

current phase
= enroute

?

yes

no

yes

no

 Figure 25-24. Sequential Logic for get_time_value Routine (continued)

ETMS System Design Document
Version 6.0

25-83

Compute distance 1, the distance from the previous position
to the start point of descent

Compute the level time leg = (distance 1 / spd_cruz)
Compute the descent time leg using the descent_time_value
procedure
Set the current time to the sum of
the level time leg and the descent time leg

End

End

Set current time to
(current distance – previous distance) / current speed

b

Is the
previous phase

= level_out
and

current phase
= level_out

?

Is the
previous phase

= enroute
and

current phase
= enroute

?

Is the
previous phase

= enroute
and

current phase
> enroute

?

no

no

no

yes

yes

yes

 Figure 25-24. Sequential Logic for get_time_value Routine (continued)

ETMS System Design Document
Version 6.0

25-84

End

Set current time to (distance 2) / spd_cruz

a

End

Start

Is speed 2
> spd_cruz

?

Set distance 1, distance from the high altitude point (previous
position) down to the runway.

Set distance 2, distance from the low altitude point (current
position) down to the runway

Look up the speed 1 and time 1 from the descent_by_dist map
using distance 1

Look up the speed 2 and time 2 from the descent_by_dist map
using distance 2

Set current time to (time 1 – time 2)

Is the
aircraft

propellor
driven

Figure 25-25. Sequential Logic for get_descent_time Routine

ETMS System Design Document
Version 6.0

25-85

Set current time to
(distance 1 – distance 3) / spd_cruz
+ (time 3 – time 2)

a

End

End

Increment distance 3 by 2 n.miles

Set distance 3 = distance 2

Set current time to
(time 3 – time 2)

Look up speed 3 and time 3 from
the descent_by_map using

distance 3

Is
distance 3

>= distance 1
?

Is speed 3
>= spd_cruz

?

yes

no

yes

no

Figure 25-25. Sequential Logic for get_descent_time Routine (continued)

For all other message types, the coordination fix must be compared to the event list to locate the
event that is closest. This comparison traverses the event list and determines which event is
closest to the coordination fix event. Once the minimum distance event is located,
interpolate_previous_flight_times checks to see if this minimum distance is within a tolerance.
Depending on the result of this comparison, flight-times computation proceeds as follows.

If no event is found to be within the tolerance, interpolate_previous_flight_times assumes that
the coordination event is before the beginning of the event list (truncated event list case). It then
calculates the time for the first event in the event list based on the flight's average speed and the
position defined by the coordination fix event. Since all events in the event list are in the future
for this case, Modelflight is called to compute the flight times.

ETMS System Design Document
Version 6.0

25-86

If an event is located within the tolerance, interpolate_previous_flight_times utilizes this event as
the last_actual_event. It first uses the coordination fix event and the events before and after it in
the event list to perform a distance and velocity weighted calculation of the time of the
last_actual_event. Interpolate_previous_flight_times then uses Modelflight to compute the
future flight times, constraining the time value at the last_actual_event to the previously
calculated value. The resulting event list has the following qualities:

• Times which are interpolated previous to the last_actual_event.

• A time for the last_actual_event that is exactly equal to the estimated value.

• Future times computed by Modelflight which are consistent with the time in the
last_actual_event.

25.14.4.2 The mergeeventlists Routine
The mergeeventlists routine takes two event lists and combines them such that all the points in
the newer list are preserved. The old list is typically the full flight plan (FZ). The new list may be
the result of a boundary crossing (UZ), which often begins in the midst of the old list. A new list
may also be the result of an amendment (AF), and may be very different from the old list.

Mergeeventlists receives three types of data:

(1) Old event list.

(2) New event list.

(3) Flight status flag indicating whether flight is active or not.

Mergeeventlists produces three types of data as well:

(1) Merged event list.

(2) Pointer to the last actual event in the merged event list, i.e., the last event that we
know has already occurred.

(3) Flag that indicates the strategy used to perform the merge. The codes are

(a) 100: used strategy (1), special case, looping flights (see (1) below).

(b) 200: used strategy (2), connect at a common point (see Figure 25-26).

(c) 300: used strategy (3), connect at a close point (see Figure 25-27).

(d) 400: used strategy (4), connect at a point based on reasonable bearings (see
Figure 25-28).

(e) 500: default, keep first event of old list and append new list.

The main task associated with combining two event lists is to determine the exact point at which
to join the two lists. Mergeeventlists tries four successive strategies, and the first appropriate one
is implemented. If none of the four methods can be implemented, the default merge is used.
Afterwards, a flag is returned indicating which method was used. The strategies, corresponding
to output flags, are presented as follows:

ETMS System Design Document
Version 6.0

25-87

(1) Looping flights - A special case common to military flights where the old list
consists of only an airport, and the new list starts with a fix and ends with the
same airport. We simply concatenate the two lists.

(2) Connect at a common point - In many cases, there is a fix event common to both
lists. This strategy is to look for such a fix and connect the two lists at that point.

First, procedure matchfix is invoked to find a common fix. This routine is passed
the first point in the new event list and the entire old event list. It considers the fix
to be present in the event list if it explicitly appears in the list or a fix event in the
list is found which has the same or almost the same latitude and longitude. If a
common fix is found, then the two lists are traced starting at that point to find the
last actual event that they have in common. The two lists are connected at this
point. In Figure 25-26, the last actual event could be C, D, or E. Assuming it is D,
the merged list is then created by joining events in the old list up to, but not
including, the last actual event (A to C) with events in the new list, starting with
the last event (D to J).

old event list

new event list

merged event list

A B

C

D E
F G

C

D E
H

J

A B

C

D E

H

J

Figure 25-26. Merging Event Lists with a Common Point

(3) Connect at a close point −− If there is no common fix, then the routine tries to
connect the beginning of the new event list to a point in the old list which is fairly
close to it.

Function flep is used to determine which point on the old event list is closest to
the beginning of the new event list. If the distance between the two points is more
than twenty miles, then the next step is strategy (4). If not, then the routine
connects the two lists at this point. In Figure 25-27, flep decides that event C is
the closest point in the old list to event H. The merged list is created by joining
events in the old list through the close point (A to C) with all events in the new
list (H to G). Additionally, the distance and heading fields of event H are altered
to reflect the distance and bearing of the new segment from C to H.

ETMS System Design Document
Version 6.0

25-88

old event list

new event list

merged event list

A B

C

D
E

F G

H
J

K

E
F G

A B

C H

J
K

E
F G

 Figure 25-27. Merging Event Lists By Finding a “Close” Point

(4) Connect based on reasonable bearings −− If there is no common point, and no
point on the old list is “close” to the beginning of the new list, then the routine
tries to connect a point in the old list with the new list such that the resulting
merged list is "smooth".

For example (see Figure 25-28), assume that event C is the last actual event. From
C, the heading to event J differs greatly from the general heading to destination
G. However, the heading from A to J is within 45_ of the general heading. When
a point in the old list such as A is found, we create the merged event list by
joining the old list through this point, with the new list. Again, the distance and
heading fields of event A are altered to reflect the distance and bearing of the
new segment from A to J.

NOTE: The list is traversed starting at the last actual event and moving backwards
checking each waypoint for a valid merge point. If one is not found, the list is
traversed starting after the last actual event and moving forward checking each
waypoint for a valid merge point.

The cleanup_merged_list routine is invoked to make sure that after all the various manipulations,
sector, route, and ARTCC entry and exit events still match up. Any that do not are deleted.
Finally, the routine cleanup_flightphases cleans up out-of-sequence, phase information created
by the merging process. Cleanup_flightphases also verifies that altitude and velocity information
during the transition to the flight's en route phase is consistent.

ETMS System Design Document
Version 6.0

25-89

old event list

new event list

merged event list

A
B C D

E
F G

J

K L

D
E

F
G

A J

K L

D
E

F G

Figure 25-28. Merging Event Lists by Connecting the Last Actual Event

Note that if either event list is empty, results will be unpredictable. Mergeeventlists is not
supposed to be invoked in this case.

25.14.4.3 The Send TDB Transactions Module
Depending on the type of input message, the new flight data in the message, and any existing
flight data in the flight database, Process Flight Messages generates one of three types of TDB
transactions. The three types of TDB transactions (add_flight, replace_flight, and delete_flight)
direct the Traffic Demands Database Processor to add, replace, or delete the flight's effect on
traffic demand counts. Process Flight Messages enqueues these transactions to the TDB Relay,
which sends the transactions to the Traffic Demands Database Processor.

The Send TDB Transactions function does the actual generation and enqueuing of these
transactions. When creating an add_flight transaction, Send TDB Transactions packs the new
flight identification, flight status, and the newly modeled list of events into the transaction. For
generating a delete_flight transaction, Send TDB Transactions packs the flight identification, old
flight status, and the old event list into the transaction. In a replace_flight transaction, the unique
flight identification is joined by (among other data) the old and new flight status, the old and new
departure date, and the old and new event list.

In order to increase throughput to the TDB, Send TDB Transactions strips out any unnecessary
data from these transactions. For all three types of transactions, Send TDB Transactions removes
events from the event list for elements that are not monitored. In the case of a replace_flight
transaction, Send TDB Transactions removes pairs of events (one from the old list, one from the
new) if they are identical; they will cause no change in the traffic demand counts.

ETMS System Design Document
Version 6.0

25-90

25.14.4.4 The Generate Flight Update Information Module
Each time a flight update occurs, the Process Flight Messages module prepares an update
message and enqueues it to the FDB Dist Relay, which via FDB Dist sends the packet to the
Flight Table Managers which have registered for services.

After NAS, OMP, schedule, and EDCT message data has been processed according to type, the
update databases flag is checked to see if it was set to TRUE during the processing. If it was, the
Generate Flight Update Information Module packs an update message. The type of data that gets
packed depends on the type of message processed. A Route Update is generated when an AF,
FA, FZ, FS, or UZ message is processed. A Tz Update is generated when a TZ message is
processed. A Time Update is generated when an AZ, DZ, or EDCT message is processed. A
Cancel Update is generated when an RZ, RS, SI_CANCEL_FLIGHT, or a
CONTROL_CANCEL message is processed, and a Position Update is generated when a TO
message is processed. After the data is packed, it is sent to FDB Dist Relay , which sends it to
FDB Dist. FDB Dist then forwards the data to all connected Flight Table Managers. For
messages with route information, a message is also sent to the Route Relay in version 4.2 format
to be forwarded to the ASDI link.

25.14.4.5 The Update FDB With Message Data Module
The Update FDB With Message Data module directs the processing of each input message. The
Update FDB With Message Data module consists of the message-specific processing performed
by the following modules: Do_FS, Do_FZ, Do_UZ, Do_DZ, Do_TZ, Do_RZ, Do_AF, Do_AZ,
Do_EDCT, Do_TO, and Do_RS. These modules are described in the following sections.

25.14.4.5.1 The Do_FS Module
The sequential logic diagram of Figure 25-29 highlights the fact that the Do_FS module can only
add FS message information to the FDB; no replacement or deletion of flight information is
performed by the Do_FS module. Thus, the primary concern of FS message matching is to detect
and prevent the addition of redundant scheduled flight plans.

After the message flight ID is checked against the appropriate bucket in the hash table, Do_FS
uses the flight status sorted list of flight addresses to attempt a match with scheduled, filed,
controlled, or active database entries, in that order. If an exact match is found for any of these
cases, Do_FS issues an error message and returns without processing the message. If no match is
found, the scheduled flight plan is added to the database using the sequence of steps shown in
Figure 25-30.

ETMS System Design Document
Version 6.0

25-91

Add FS Flight
Information

25-30

Exit

Begin

Log an Error

Do
Departure &
Arrival Points

Match?

Do
Departure &
Arrival Points

Match?

Do
Departure &
Arrival Points

Match?

Do
Departure &
Arrival Points

Match?

Do
Departure Times

Match?

Do
Departure Times

Match?

Do
Departure Times

Match?

Do
Departure Times

Match?

Any
Scheduled
Matches?

Any
Filed

Matches?

Any
Controlled
Matches?

Any
Active

Matches?

Yes Yes Yes

Yes Yes Yes

Yes Yes Yes

Yes Yes Yes

No

No

No

No

No

No

No

No

No

No

No

No

Figure 25-29. Sequential Logic for the DO_FS Module

In order to add a schedule flight plane to the database, Do_FS first allocates a new flight record
and transfers the information from the message to the new flight record. Next, flight times are
computed. The update databases flag is set to TRUE, and the TDB update type is set to add.

ETMS System Design Document
Version 6.0

25-92

Add Event List
To EVDB

Exit

Begin

Compute Flight
Times

Load Header
Information

Figure 25-30. Sequential Logic for the Add FS Flight Information Routine

25.14.4.5.2 The Do_FZ Module
Detailed sequential logic diagrams for the message matching performed by Do_FZ can be found
in Figure 25-31. Except where noted, the following discussion assumes that if a matching FDB
entry is found, the flight information is updated as described later in this section and, if no match
is found, the flight plan is added to the database.

When an FZ (flight plan) message is received by Process NAS Messages, an attempt is first made
to match the flight ID in the message to flight ID's of records contained in the FDB. Flight ID
matching is accomplished by means of the hashing function described in Section 25.14.4. If the
flight ID match is successful, Do_FZ receives a list of all matching flights sorted by flight status.
Depending on the type of message (active or proposed), Do_FZ searches this list in one of two
orders of flight status based priority.

NOTE: A proposed message is one with a computer identification code or one that
originates outside CONUS. An active message is one without a computer

identification code that originates in CONUS.

For a proposed message, Do_FZ first attempts a match with a controlled flight; failing this, it
proceeds to check matches with scheduled flights, matches with computer IDs, active flights,
cancelled flights, and finally filed flights. If a computer ID match is found to a flight which is
already active, Do_FZ logs an error and discards the message. If the message matches a filed
flight without matching that entry's computer ID, Do_FZ treats the entry as a multiple flight plan.
When this occurs, Do_FZ checks all matching entries to see which one is currently in the TDB,
deletes any existing TDB entry for the flight, and adds the new flight plan to the database.
Do_FZ also preserves any controlled or scheduled times present in the old flight entry so that
these times may be added to the new entry.

ETMS System Design Document
Version 6.0

25-93

Add FZ
Information

25-32

Any
Controlled
Matches?

a

Exit

Exit

Exit

Begin

Any
Scheduled
Matches?

Any
Computer
Ids Match?

Previously
Controlled?

Any Cancelled
Matches?

Any
Active

Matches?

Any
Filed

Matches?

Flight Status
Active?

Flight Status
Filed, Ctld, or

Cancd?

Previous Flight
Plan Filed?

Matching TDB
Entry?

Replace FZ
Information

25-33

Update TDB
Entry with FZ

Infor

Replace FZ
Information

25-33

Add FZ
Information

25-32

Save Ctrld Times

Find TDB Entry

Log an Error

Do
Departure
Airport and

Times
Match?

Do
Departure Airport

and Times
Match?

Do
Departure
Airport and

Times
Match?

Is Message
Proposed?

Do
Arrival Airport

and Times
Match?

Do
Arrival Airport

and Times
Match?

Do
Arrival Airport

and Times
Match?

Does
Arrival Airport

Match?

Does
Arrival Airport

Match?

Does
Departure

Airport
Match?

No

No

No

No No

No No

No No No

No

No

No

No

No

No

No

No No No

No

Yes

Yes

Yes

YesYes

Yes

YesYesYes

Yes

Yes

Yes Yes Yes

YesYes

Yes

Yes

Yes

Yes

Yes

Figure 25-31. Sequential Logic for the Do_FZ Module

ETMS System Design Document
Version 6.0

25-94

Find TDB Entry

a

ExitAny Active
Matches?

Any
Controlled
Matches?

Any
Filed

Matches?

Any
Scheduled
Matches?

Check for
Previous Flight

Legs

Replace FZ
Information

25-33

Add FZ
Information

25-32

Do
Departure or
Arrival Times

Match?

Do
Departure

or Arrival Point
Match?

Do
Departure &
Arrival Points

Match?

Do
Departure or
Arrival Points

Match?

Do
Departure or
Arrival Points

Match?

No No

No No

NoNo

No No No

Yes Yes

Yes Yes

Yes Yes

Yes Yes Yes

 Figure 25-31. Sequential Logic for the Do_FZ Module (continued)

For an active message, Do_FZ checks for active, controlled, filed, and scheduled matches (in
that order). A match to a filed flight with multiple flight plans requires that the update be
performed on the entry which is currently in the TDB. In the case of a match to a controlled,
filed, or scheduled flight, the list of active entries is first scanned by check_previous_flightlegs
in order to locate and deactivate any active flights with the same flight ID as the message.

In order to add a new flight plan to the database (see Figure 25-32), Do_FZ first allocates a new
flight record and fills in the header record information (proposed departure and arrival times,
flight profile information, proposed altitude, and velocity, etc.). If the message is proposed,
Do_FZ computes the flight times in the event list and adds the event list to the evdb. If the

ETMS System Design Document
Version 6.0

25-95

message is active, Do_FZ examines the message's event list in order to locate the event that most
closely corresponds to the coordination fix. After locating the coordination fix, Do_FZ
interpolates previous event times and computes event times over the future portion of the event
list. The update databases flag is set to TRUE, and the TDB update type is set to add.

Add Event List
To EVDB

Is Message
Active?

Exit

Begin

Locate
Coordination

Fix In Event List

Interpolate
Previous Flight

Times

Compute Flight
Times

Load Header
Information

Yes

No

Figure 25-32. Sequential Logic for the Add FZ Information Routine

If a matching flight was found in the database, Do_FZ follows the logical flow shown in Figure
25-33 to update the database with the information contained in the message. An active message's
event list is merged with the existing event list, and times are computed. If the merge fails, or if
the message is proposed, Do_FZ replaces the existing event list with the one found in the
message. The update databases flag is set to TRUE and the TDB update type is set to replace.

ETMS System Design Document
Version 6.0

25-96

Interpolate
Previous Flight

Times

Was Merge
Successful? Exit

Begin

Is Message
Active?

Number of
Events > 0?

Is Message
Proposed?

Replace Event
List In EVDB

Compute Flight
Times

Replace Old Event
List With New

Merge Old and
New Event Lists

Replace Old Event
List With New

Replace Header
Information

NoNo

No

No

YesYes

Yes

Yes

Figure 25-33. Sequential Logic for the Replace FZ Information Routine

ETMS System Design Document
Version 6.0

25-97

25.14.4.5.3 The Do_EDCT Module
The Do_EDCT module processes EDCT (Estimated Departure Control Time) messages as
shown in Figure 25-34. For each EDCT message, Do_EDCT receives a list of existing flight
entries (sorted by flight status) with the same flight ID as the message. Do_EDCT searches this
list for the entry which best matches the EDCT message in the following flight status order:
filed, scheduled, active, controlled. For filed, scheduled, and controlled matches, Do_EDCT
also checks for flights that have the same departure and arrival points as the EDCT message
before updating the database entry with data from the message. If an active database entry with
same departure and arrival points, the message is ignored. When no match is found through the
process described above, Do_EDCT adds the EDCT information to the database.

Begin

Replace EDCT
Information

25-36

Add EDCT
Information

25-35

Any
Controlled
Matches?

Any
Active

Matches?

Do
Departure Times

Match?

Any
Scheduled
Matches?

Any
Filed

Matches?

Exit

Do
Departure &
Arrival Points

Match?

Do
Departure &
Arrival Points

Match?

Do
Departure &
Arrival Points

Match?

Do
Departure &
Arrival Points

Match?

No No

NoNoNo

NoNo

NoNo

Yes Yes

Yes Yes Yes

YesYes

YesYes

Figure 25-34. Sequential Logic for the Do_EDCT Module

ETMS System Design Document
Version 6.0

25-98

Logic which creates a new flight entry in the FDB with the EDCT message information is shown
in Figure 25-35. Do_EDCT first allocates a new flight record, and inserts the flight into FDB.
The update databases flag is set to TRUE, and the TDB update type is set to add.

Begin

Load Header
Information

Insert flight
into FDB

Exit

Figure 25-35. Sequential Logic for the Add EDCT Flight Information Routine

Do_EDCT updates an existing FDB entry with EDCT message information as shown in Figure
25-36. Do_EDCT replaces the header record with the information contained in the EDCT
message. If the matching entry has an event list and the first event is a departure event,
Do_EDCT updates the first event time, computes flight times for the rest of the event list, and
replaces the event list in the evdb. Do_EDCT updates the time arrays, sets the update databases
flag to TRUE and sets the update type to replace.

ETMS System Design Document
Version 6.0

25-99

Exit

Replace Header
Information

Update First
Event Time

Computer Flight
Times

Replace Event
List In EVDB

Update Time
Arrays

Begin

Update First
Event Time

Is Flight
Status
Cntrld?

Matching
Entry Have

Events?

Is 1st Event
a Departure

Event?

No

No

No

Yes

Yes

Yes

Figure 25-36. Sequential Logic for the Replace EDCT Flight Information Routine

ETMS System Design Document
Version 6.0

25-100

25.14.4.5.4 The Do_DZ Module
DZ (departure) messages received by Process Flight Messages are processed by the Do_DZ
module as shown in Figure 25-37. Process Flight Messages first checks the message's flight ID
against the hash table (see Section 25.14.4). If no matching flights are located, the DZ message
information is added to the database. Any matching flights are sorted by flight status before
applying the DZ-specific message matching criteria.

Do_DZ first checks for computer ID matches, then for matches with filed, controlled,
scheduled, and active flights. A computer ID match or a match with a controlled or scheduled
entry causes a check for any currently active flights with the same flight ID before updating
matching database entry with the information contained in the DZ message. For messages
originating outside of CONUS, an attempt is made to match with an active flight. To be
considered a match, the arrival airports must be the same and the coordination fix time in the DZ
message must be earlier than the last TZ time. A duplicate flight plan condition occurs if a filed
flight entry matches the message in every way except the computer ID.

ETMS System Design Document
Version 6.0

25-101

Matching Entry
in TDB?

Find TDB Entry

Exit

Exit

Exit

Begin

Add DZ
Information

25-38

Replace DZ
Information

25-39

Check Previous
Flight Legs

Add DZ
Information

25-38

Does
Arrival Point

and Time
Match?

Is Message
Active?

Is Flight Status
Active?

Multiple
Flight

Plans?

Dz Coord
< last Tz

time?

Does
Arrival Point

Match?

Do
Departure Times

Match?

Do
Departure &
Arrival Points

Match?

Do
Departure &
Arrival Points

Match?

Any
Controlled
Matches?

Any Computer
ID’s Match?

Is Flight Status
Filed?

Is Message
Proposed?

Any
Scheduled
Matches?

Any Active
Internat’l
Matches

Any Active
Matches?

Does
Departure Point

and Time
Match?

Do Filed
Departure &

Arrival Points
Match?

Yes YesYes

Yes

Yes

Yes

Yes

Yes Yes

Yes Yes

Yes
Yes

Yes

Yes Yes

Yes

Yes

Yes

No

No

No No

No

NoNo

No

No

No

No

No No No

No

No

No

No

No

Figure 25-37. Sequential Logic for the Do_DZ Module

ETMS System Design Document
Version 6.0

25-102

In order to add a DZ message to the database (see Figure 25-38), Do_DZ first allocates a new
flight record and inserts the message information. Next, it checks the message's coordination fix
to see if it corresponds to an airport departure event. If it does, Do_DZ then adds the departure
event to the evdb. The update databases flag is set to TRUE, and the TDB update type is set to
add.

Exit

Load Header
Information

Begin

Add Event List
To EVDB

Is 1st
Event A

Departure
Event?

Yes

No

Add Flight to
Time Arrays

Figure 25-38. Sequential Logic for the Add DZ Flight Information Routine

Updating an existing flight record (see Figure 25-39) begins when Do_DZ replaces the record
header information with the data contained in the message. If the matching entry has an event
list, Do_DZ updates the entry's event list under one of three conditions:

(1) The coordination fix event in the message matches the first event in the entry's
event list.

(2) The coordination time in the DZ message is an estimated (E) time.

(3) A proposed flight plan containing a tailored route was received for this flight.

If none of these conditions are met, Do_DZ logs an error and returns without processing the
message. Once the first event time has been updated, Do_DZ recomputes the flight times in the
event list and replaces the event list in the EVDB. If the matching entry does not already have an
event list, and if the coordination fix event in the message is a departure airport event, Do_DZ
adds the event to the evdb. The update databases flag is set to TRUE and the TDB update type is
set to replace.

ETMS System Design Document
Version 6.0

25-103

Exit

Update First
Event Time

Compute Flight
Times

Replace Event
List in EVDB

Update Time
Arrays

Add Event List
To EVDB

Replace Header
Information

Begin

Do Coord. &
1st Event
Match?

Is
Coordination

Time
Estimated?

Was
Flight Plan
Tailored?

Is Coord.
Event A

Departure?

Matching
Entry Have

Events?

YesYesYes

YesYes

NoNoNo

NoNo

Figure 25-39. Sequential Logic for the Replace DZ Flight Information Routine

25.14.4.5.5 The Do_UZ Module
Process Flight Messages utilizes the Do_UZ module to perform processing of UZ (boundary
crossing) messages as shown in Figure 25-40. As in other message processing, Do_UZ accesses
a list of addresses which have been sorted by flight status during message matching. For active
messages, Do_UZ gives highest matching priority to active flights.

ETMS System Design Document
Version 6.0

25-104

Begin

Check For Active
Flights With Same

Flight ID

Check For Active
Flights With Same

Flight ID

Exit

Exit

Any Filed
Matches?

Any
Scheduled
Matches?

Add UZ
Flight

Information
25-41

Find TDB Entry

Log an Error

Do
Departure &
Arrival Points

Match?

Do
Departure or
Arrival Points

Match?

Do
Departure or
Arrival Points

Match?

Is Message
Active?

Any Active
Matches?

One Active
Match and
No Event

List?

Any
Controlled
Matches?

One Active
Match?

Is Message
Proposed?

Does
Matching Entry

Have Event
List?

Does
Departure

or Arrival Point
Match?

Is Event Time
Between Dep and

Arr. Times?

Yes
Yes

Yes

Yes Yes

Yes Yes

YesYes

Yes

YesYesYes

Yes

No No

No

No No

NoNo

No

No

No

No

No

No

No

Figure 25-40. Sequential Logic for the Do_UZ Module

ETMS System Design Document
Version 6.0

25-105

After active, Do_UZ checks for controlled, filed, and scheduled matches. If exact matches for
an active message fails, Do_UZ checks for a single matching entry that does not have an event
list. Otherwise, when a proposed message is received, Do_UZ logs an error and discards the
message.

In order to add the information from a UZ message to the database (see Figure 25-41), Do_UZ
first moves the information from the message into a newly allocated flight record.

Exit

Begin

Compute Future
Flight Times

Add Event List
To EVDB

Add Flight to
Time Arrays

Load Header
Information

Interpolate
Previous Event

Times

Coord Fix
in Event

List?

No

Yes

Figure 25-41. Sequential Logic for the Add UZ Flight Information Routine

Next, Do_UZ compares the message's coordination fix to the event list in order to find the event
which most closely matches. It interpolates flight event times previous to the matching event and
models flight times over the future portion of the event list. The update databases flag is set to
TRUE, and the TDB update type is set to add.

If a matching entry is found and that flight has an event list, Do_UZ follows the logical flow
depicted in Figure 25-42 to update the matching entry.

ETMS System Design Document
Version 6.0

25-106

Begin

En Route
Phase and

TZ Hist > 1?

Update Arrival
Time and Arrival

Fix Time

CleanUp Flight
Phases

Update Message
Event Times

Merge Old and
New Event Lists

Set Velocity to
Reported Speed

Replace Header
Information

Was Merge
Successful?

Event List
Update

Successful?

Matching
Entry Have

Any Events?

Exit

Compute Future
Flight Times

Yes

No

Yes

No

Yes

No

No

Yes

Figure 25-42. Sequential Logic for the Replace UZ Flight Information Routine

ETMS System Design Document
Version 6.0

25-107

Do_UZ first attempts to merge the old and new event lists. If the merge is successful, Do_UZ
computes future flight times in the merged list based on the message's coordination time. If the
merge is unsuccessful, Do_UZ replaces the old event list with the new list, interpolates flight
times for events previous to the coordination fix, and computes any future flight event times. The
update databases flag is set to TRUE, and the TDB update type is set to replace.

25.14.4.5.6 The Do_TZ Module
The message matching sequence for TZ (position update) messages is shown in Figure 25-43.

Any Active
Matches?

Add New
Flight

Information

Exit

Exit

Begin

Exit
Update Flight
Information

With TZ

Check For
Previous Flight

Legs

Log An Error

Any
Filed

Matches?

Any
Scheduled
Matches?

Any
Controlled
Matches?

Do
Computer

ID’s Match?

Ctrld Count
Reached?

Do
Computer ID’s

Match?

Only One
Active
Match?

Sched
Count

Reached?

Only One
Match?

Is Tz Time
Between
Pdep and

Parr?

Is Tz Time
Between
Pdep and

Carr?

Filed Count
Reached?

Is Tz Time
Later than
Ctrld Dep

Time?

Is Tz Time
Btwn Sched
Arr & Dep

Time?

Does
Match Have at

least One
Event?

Yes Yes

Yes

YesYes Yes Yes

Yes

Yes

Yes

Yes

Yes

Yes
Yes

Yes

No

No

No

No

No

No

No

No
No

No No

No

NoNoNo

No

Figure 25-43. Sequential Logic for the Do_TZ Module

ETMS System Design Document
Version 6.0

25-108

Due to the limited amount of information contained in TZ messages, the message is ignored if no
flight ID match is found. When a flight ID match is found, highest priority is given to active
flights followed by filed and controlled flights. An active match is only allowed if there is only
one active flight with the same flight ID as the message. When Do_TZ locates a redundant active
flight, it logs an error and discards the message. For controlled and filed flights, the matching
entry's computer ID is also checked to ensure an accurate match. If this computer ID check is
successful, Do_TZ first checks for and deactivates any active flights with the same flight ID as
the current message. In all cases, Do_TZ checks to make sure that the event list contains at least
two events before proceeding with position update processing, which is done by the
TZProcessingForFDB module.

25.14.4.5.7 The TZProcessingForFDB Module
The TZProcessingForFDB module updates the matching flight's Flight Database entry with
information from a parsed position update (TZ) message. A TZ message contains the latest
actual flight location, velocity, and altitude; TZProcessingForFDB applies this real-time,
real-life information to the flight's predicted path (the event list) to best estimate the velocity,
altitude, and, most importantly, time of the flight at each point (event) in the path.

In general, once the appropriate FDB entry has been found for the input TZ message,
TZProcessingForFDB updates the flight's entry as shown in the flow chart of Figure 25-44. This
section will describe this higher level processing; the important subroutines,
UpdateEventListForTZ, VerifyFlightOnRoute, and NextPositionPrediction, and
RecoverLastActualEventBy TZLocation will be described in future sections.

TZProcessingForFDB first checks the parsed TZ message for valid data (e.g., speed should be
non-zero). If the flight had been determined to be taking its en route delay (as assigned in the
flight plan), TZProcessingForFDB checks further whether the time on the TZ message is later
than the predicted ending time of the en route delay. If the TZ time is earlier, some information
from the message is saved in the FDB, but basically, the message is ignored. If the TZ time is
later, TZProcessingForFDB continues with its normal processing.

NOTE: The terms location status and last actual event are introduced below, but are described in greater
detail in the description of the RecoverLastActualEventByTZLocation routine.

After retrieving the flight's event list, TZProcessingForFDB performs five of seven major checks
in order to verify TZ information completeness and consistency with the flight record and event
list:

(1) If the first event in the event list corresponds to the departure airport, make sure
that the current value of the last actual event stored in the flight record is at least
equal to one.

(2) If this is the first TZ message or if a route change has occurred, check to make
sure that the event list is consistent with respect to phase, altitude, velocity.

ETMS System Design Document
Version 6.0

25-109

Is Msg Time
Actual
Time?

Exit

Activate Flight

1

Determine if
TZ is Before or

In the event
List

Set Proposed
Speed and
Altitude if
Necessary

Set Limited TZ
Correction if
Necessary

Set Ground Speed

Begin

Exit

Event Times
Consistent?

Invalid
Velocity in
Event List?

Departure
Date Set?

Valid Fix
Coords?

Msg Time
Consistent?

Less than 3
events?

Is 1st event
Departure
Airport?

FZ, AF, UZ,
& FS Msgs
Processed?

Is TZ Msg
Time Earlier

than 1st
Event?

Is Flight Pos
Before Event

List?

Tz Coords
consistent with

previous
TZ?

Successfully
Got Event

List?

Is Flight
Status Sched,

Ctrld, or
Filed?Phase

Violation in
Event List?

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

No

No

No No

No

NoNo

No

No Yes

Figure 25-44. Sequential Logic for the TZProcessingForFDB Process

ETMS System Design Document
Version 6.0

25-110

1

Set Location
Status

Recover Last
Actual Event

By TZ
Location

Exit

Predict Next
Position

Update Arrival
Fix Time

Determine if
last TZ was

also Off Route

Update Event
List

Set confirmed
off route flag if

appropriateUpdate
distance from

last TZ

Compute
Distance

Flown Over
Event List

Set
Correction
Direction

Update Event
Times based

on this TZ

Is this the
1st TZ

Received?

Tz in Event
List?

Is Location
off Route?

Event
Location In or
Before Event

List?

Found Last
Actual
Event?

Should
Event List Be

Updated?

Is there a
Flight Plan
Deviation?

Yes Yes Yes

Yes

Yes

Yes

Yes

No No No

No

No

No

No

 Figure 25-44. Sequential Logic for the TZProcessingForFDB Process (continued)

ETMS System Design Document
Version 6.0

25-111

(3) If the ground speed in TZ message is missing, attempt to find a replacement from
past TZ messages or the flight plan. If no value is available, a limited TZ
correction is made based solely upon the TZ location.

(4) The ground speed obtained from the message or during check (3), is compared to
the speed in the last actual event or the filed speed. Limited TZ correction will
also result if the the new speed is found to be unreasonable.

(5) If TZ message has a valid speed, but the proposed speed and/or proposed altitude
are not set for the flight, they must also be set according to the best information
available.

Before performing the final two major checks, TZProcessingForFDB retrieves the flight's
previous location status. This status can be one of two values, before or in, depending on the
flight's position (as described by the TZ message) with respect to the event list. The current
location status is determined later in TZProcessingForFDB's processing by the
RecoverLastActualEventByTZLocation routine.

With the previous location status, TZProcessingForFDB performs the following two final
checks:

(1) If the first event in the event list is the departure airport and contains an actual
departure time, make sure that the TZ time is after this departure time. Also verify
that for this case the TZ is in the event list.

(2) This is the final check for possible corruption of coordinates. TZ coordinates must
be consistent with the previous TZ coordinates saved in FDB. This means the
geographical distance between TZs has to be close to distance computed with
Isaac Newton's method, i.e., speed multiplied by time difference.

If current TZ position is before the event list or if this is the first TZ for the flight and the actual
departure time (from a DZ) is missing, TZProcessingForFDB updates the time for all events in
the list, beginning with the first, based on the best available ground speed and the distance
between the TZ position and the first event.

If previous TZ is in the event list, the routine NextPositionPrediction is called. This routine
attempts to predict the current flight position with respect to the last TZ message. If this
prediction fails, or if it compares poorly with the actual position reported in the current TZ
message, TZProcessingForFDB does not update the event list times. However, if after all checks
have been completed, the current TZ location is found to be in the event list,
TZProcessingForFDB invokes the routine RecoverLastActualEventByTZLocation to find the
new last actual event and determine location status.

When the TZ location is found to be in the event list, RecoverLastActualEventByTZLocation
seeks the the location of the event in the event list which is previous and closest to the position
depicted in the current TZ message. This event is called the last actual event. Using this last
actual event, TZProcessingForFDB can interpolate times for past events and predict times for
future events.

The location status is used throughout the TZ message processing; it is determined by the
following three questions:

ETMS System Design Document
Version 6.0

25-112

(1) Is TZ location within the limit distance from the flight path?

(2) Is there is a delayed event right after TZ location?

(3) Is the TZ location before or in the flight event list?

The concepts of before and in must be considered, because each event list does not necessarily
begin at the departure airport (e.g., when the event list was obtained from a UZ message). This
means that part of the event list is missing, and that TZ messages are arriving that correspond to
some point within the missing portion. The actual location for this case is considered before the
geographic point where the event list actually begins. If the TZ message position corresponds to
a point after the first event, the message is considered to be in the event list.

The limit distance is the maximum distance allowed between a flight's current position (from the
TZ) and its predicted route of flight (the event list) before a flight is considered off-route. A
delayed event is an event for which a delay value was specified in the initial field 10. The TZ
location is determined to be before or in the event list depending on its position relative to the
first event in the event list.

RecoverLastActualEventByTZLocation returns the following values of location status:

• 0 when the flight is near the route, no delayed event found.

• 1 when the flight is off the route, no delayed event found.

• 2 when the flight is near the route and in delayed event area.

• 3 when the flight is off the route and in delayed event area.

• 4 when TZ time shows a time earlier than the time for the new last actual event
and when the TZ position is near an event with a filed delay.

• 5 when TZ location is determined as being before the event list.

Values 0 −− 4 correspond to a TZ which is in the event list. If location status = 0, then
TZProcessingForFDB invokes the routine UpdateEventListForTZ (Section 25.14.4.5.8) which
updates events using the new time, ground speed, and altitude from the TZ. If location status = 1
then TZProcessingForFDB invokes the routine VerifyFlightOnRoute (Section 25.14.4.5.10),
which determines whether the flight is currently on or off its proposed route. If the flight is
determined to be on its route, TZProcessingForFDB invokes UpdateEventListForTZ. Location
status values of 2, 3, or 4 causes the initiation of a delay period that will be used during
subsequent TZ processing. During this delay period, TZs will not be used to update event list
times. As has been outlined previously, a location status of 5 (TZ is before the event list) causes
only future event times to be computed.

Next, TZProcessingForFDB replaces any event list changes in the EVDB. TZProcessingForFDB
then updates the appropriate fields in the FDB record (current airport arrival time, arrival fix
time). The update databases flag is set to TRUE, and the TDB update type is set to replace.

TZProcessingForFDB may encounter numerous error conditions during processing of TZ
messages. Some of these error conditions are provoked by live data corruption: any part of the
TZ message may contain an error or be missing. The other major source of error is the irregular
sequence of the messages themselves, particularly when a flight path correction is made.

ETMS System Design Document
Version 6.0

25-113

TZProcessingForFDB attempts, wherever possible, to correct any error it detects. If such
correction is not possible, TZProcessingForFDB will immediately cease processing of the
erroneous message, which presents corruption of current flight information. Errors which
indicate database corruption or numerical inconsistencies between a TZ message and the flight
information currently stored in the FDB will generate an error message on the main fdb_manager
transcript pad.

25.14.4.5.8 The UpdateEventListForTZ Module
The UpdateEventListForTZ module uses information from the parsed TZ message to update the
time, speed, and altitude values in certain events of a flight's event list. UpdateEventlistForTZ
also uses certain control information as determined by TZProcessingForFDB. This information
determines how to select the event at which the update will begin and whether
UpdateEventlistForTZ should use the TZ supplied speed for this update. Upon successful
completion, UpdateEventListForTZ returns an updated event list.

The logical flow of UpdateEventListForTZ is shown in Figure 25-45. UpdateEventListForTZ
begins by comparing the TZ supplied speed and altitude to some reasonable values. If the speed
and altitude do not fall within these limits, the module will use the proposed cruising speed and
altitude in its predictions.

ETMS System Design Document
Version 6.0

25-114

1

Is
Corr_event

Time
Actual?

Find Previous
Actual Event

Exit

Begin

Exit

Put Vel/Alt for
Corr_event in

Event List

Compute
Delta Time

Btwn TZ and
Corr_event

Find Nearest
Future Event

Set Limits for
Speed and

Altitude

Interpolate
Time/Vel/Alt

for Corr_event

Model Ground
Speed, Alt,

and Time for
Future Events

Check Corr_event
Time for

Reasonableness

Modify Times
Accordingly

Direction =
Forward?

Was a DZ
Received?

Interpolated
Time < 0?

Limited TZ
Correction?

Is Prior
Event Time

Actual
Time?

Is Prior
Event in Event

List?

Model Velocity
And Altitude
for Future

Events

Is
Corr_event
a Delayed

Event?

In Final
Flight

Phase?

Direction =
Forward;

Corr_event =
Future_event

Direction =
Backward;

Corr_event =
Prior_event

Is
Corr_event
1st in Event

List?

Yes Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No No

No

No

No

No

No

No

No

No

Figure 25-45. Sequential Logic for the UpdateEventListForTZModule

ETMS System Design Document
Version 6.0

25-115

Is
Corr_event
1st event?

Exit

Interpolate
Time back to
last Actual

Time

1

De Facto
Delay?

Is
Corr_event
1st event?

De Facto
Delay?

Limited TZ
Correction?

Model Future
Event Times

Check Event List
Consistency

Interpolate
Speed and Alt
back to last
Actual Time

YesYes

Yes

Yes

Yes

No No No

No

No

 Figure 25-45. Sequential Logic for the UpdateEventListForTZModule (continued)

UpdateEventListForTZ then uses the supplied event list and last actual event value to determine
the direction of the time update. The direction is assumed to be BACKWARD, by default. If the
last actual event has already been updated by actual information from a previous TZ, the
direction is set to FORWARD.

Using the direction of update, UpdateEventListForTZ selects an event in the list as the
correction event. This correction event is the event most closely associated with the position
from the TZ. Usually, the direction of update is BACKWARD and the last actual event is
selected as the correction event. However, if the update direction is FORWARD, the last actual
event was the correction event already; so the closest future event will be used instead. This
correction event is used as an anchor point; UpdateEventListForTZ interpolates times for events
before this event in the list and models times for events after it. No correction is done if
correction event is the last one in the event list or if its phase value is approach or landed.

ETMS System Design Document
Version 6.0

25-116

UpdateEventListForTZ uses the position from the correction event and the flight's position from
the TZ to compute a distance between them. Using this distance and the speed of the flight,
UpdateEventListForTZ computes a delta time. If the update direction is BACKWARD, the new
time at the correction event is equal to the the TZ time stamp time minus the delta time. If the
update direction is FORWARD, the TZ time stamp time plus the delta time equals the correction
event's new time.

Make updates for speed and altitude for future events, i.e., model them: if they are not on en
route phase make an extrapolation for speed and altitude until en route phase met or the altitude
reaches cruising level. They are considered to be on en route phase of flight, if the last actual
event is on en route phase of flight, and the altitude obtained from TZ is not more than 5% less
than proposed altitude. The adjustment for events velocities in arrival, approach, and landing
phases are made by a simple rule: do not allow them to exceed cruising velocity. After these
changes, the events' times correction can be done. The time correction will not be performed for
delayed events. Now, the same type of correction is done for the past events, i.e., interpolation,
before the first event with actual information from the past TZ is met.

During UpdateEventListForTZ's processing, certain circumstances may cause errors resulting in
logical inconsistencies in the event list. These inconsistencies are listed below; when they occur,
UpdateEventListForTZ signals the calling routine so that the event list is not replaced in FDB:

• Neither the TZ nor the correction event has a valid speed and therefore even the
limited correction cannot be done.

• InterpolTimeVelocityAltitude failed to interpolate values for correction event from
TZ information.

• The new correction event time is beyond the reasonable limit: <=0 or >2880.

• Events phases are in wrong order in the list.

25.14.4.5.9 The NextPositionPrediction Module
The NextPositionPrediction module uses information from the parsed TZ message, the matching
flight's event list, and the regular time interval between successive TZs for a particular flight
(currently five minutes), to compute the spherical coordinates (latitude , longitude) for the next
expected plane position on the route (as determined by the event list). These predicted
coordinates are used by TZProcessingForFDB to help check the reasonableness of information
from the next parsed TZ message.

The logical flow of the NextPositionPrediction module is shown in Figure 25-46.
NextPositionPrediction first computes the difference between the time stamp from the previous
TZ and the time at the previous last actual event. This time difference is added to the regular TZ
interval, and NextPositionPrediction uses this total time difference and the speed from the last
actual event to compute a relative distance flown since that event. Using this predicted relative
distance and distances between events in the event list, NextPositionPrediction finds the closest
likely event at the next TZ time. Finally the subroutine InterpolCoordinatesCompute calculates
spherical coordinates for predicted flight position using coordinates of the two closest events on
the route and a distance at which the third point shifted off the first event.

ETMS System Design Document
Version 6.0

25-117

Start

End

Update predicted
coordinates and goal
event in FDB header.

Get Time of Last
TZ

Get Time for Last
Actual Event

Predict distance
along event list to

next TZ.

Predict (future)
Last Actual Event,
Goal event, and

geographical
latitude and
longitude

Figure 25-46. Sequential Logic for the NextPositionPrediction Module

All NextPositionPrediction processing assumes that the flight's position, as described by TZ
messages, is close (within some tolerance) to the flight path defined by the event list. If the
flight's position is not, NextPositionPrediction fails, and dummy predicted coordinates are set.

25.14.4.5.10 The VerifyFlightOnRoute Module
The VerifyFlightOnRoute module checks if the flight continues along the planned route (as
determined by the event list) or if it diverges for any reason. The verification is done only after
TZProcessingForFDB determines that the shortest distance between TZ location and the route
exceeds a deviation limit provided in the FDP start-up parameters.

ETMS System Design Document
Version 6.0

25-118

The VerifyFlightOnRoute module uses the following input in its determination of the flight's
position status:

(1) TZ message information.

(2) Flight's actual shortest distance from the route at the time.

(3) A deviation limit measured in miles.

(4) A deviation slope limit given as a constant in miles per minute and the weight
coefficient alpha used for an exponential filter.

Figure 25-47 represents Sequential Logic for VerifyFlightOnRoute.

End

Start

With 3rd, etc., TZs compute
Smoothed Deviation and
Smoothed Slope using

Exponential Filtering method

Apply the rule to find out
whether the flight is going

along the route or diverged
OFF route

With 2nd TZ that exceeds the
Limit Set Measured Deviation
accrual prorated to 1 min as

Smoothed Slope

With 1st TZ that exceeds
the Limit Set Measured
Deviation as Smoothed

Deviation

Figure 25-47. Sequential Logic for the VerifyFlightOnRoute Module

ETMS System Design Document
Version 6.0

25-119

An exponential smoothing recurrent method (exponential filter) is used for measuring deviation
of the flight from its route. The deviation and its time derivative are substituted into recurrent
formulas to compute an estimation of average deviation and a derivative of deviation as a
function of time. This last value is the slope of deviation and is a function of time itself.
Physically, this is a plane speed in the off-route direction. This plane speed is measured in miles
per minute to make it independent of the between-TZ-time interval, which actually varies
unpredictably. The following global parameters are used:

(1) MAXALLOWEDDEV − Maximum allowed deviation from the route (miles).

(2) MAXALLOWEDDEVSLOPE − Maximum allowed deviation slope from the
route (miles per minute).

(3) WEIGHTCOEFFICIENT − Weight coefficient for the exponential filter (0-1).

Upon completion, the VerifyFlightOnRoute module returns TRUE if (at this time) the flight still
may be considered as following the route; otherwise, it returns FALSE.

25.14.4.5.11 The Do_TO Module
The message-matching sequence for TO messages (oceanic position updates) is shown in figure
25-48. The first step is to convert the TO position time into Julian minute format. This is done to
simplify subsequent time comparisons.

Next, Do_TO searches the provided list of FDB flight entries for the best match. The manner of
the search is shown in figure 25-49. Do_TO prioritizes the search based on flight status. It
searches for active flights first, followed by scheduled, filed, and controlled. For scheduled and
filed flights, Do_TO imposes the additional restriction that the time contained in the TO message
must fall within the departure/arrival interval of the flight.

Further processing is dependent on the number and type of flight matches found. If no FDB
flight entries match the TO message, no action is taken and Do_TO returns TRUE. If there are
multiple matches, Do_TO returns FALSE and for multiple active matches, prints an error
message. If Do_TO finds a single match, then processing continues.

If the single matching flight is active, Do_TO determines whether a TZ message was received
within a preceding time out interval. If so, the TO message is discarded and Do_TO returns true.
This is done so that more accurate TZ messages will take precedence over TO messages. In all
other cases, Do_TO calls TOMprocessingforfdb to update the FDB flight record with the TO
flight data. Finally, Do_TO sets its return value based on the success of the update.

ETMS System Design Document
Version 6.0

25-120

Start

Exit TRUE Exit FALSE
FDB entry
Updated?

TZ or TA
within timeout

period?

Is flight active?

How many good
matches?

Multiple active
flights?

Write error
message

Find matching
flight entries

TOM
processingforFDB

Apply TZ&TA
precedence rule

Reconstruct actual
position time as
Julian date plus
minutes after

midnight

no

no

no

no

yes

yes

yes

yes

0 >1

1

Figure 25-48. Sequential Logic for the Do_TO Module

ETMS System Design Document
Version 6.0

25-121

Any ACTIVE
entries?

Any FILED
entries with

departure arrival
interval?

Any
SCHEDULED

entries with
departure arrival

interval?

Exit

Start

Return number of
matching entries

Count
CONTROLLED

entries

yes

no

yes

no

yes

no

Figure 25-49. Sequential Logic for Find Matching Flight Entries Routine

ETMS System Design Document
Version 6.0

25-122

25.14.4.5.12 The TOMprocessingforfdb Module
The TOMprocessingforfdb module updates the matching Flight Database entry with information
from the TO message. TOMprocessingforfdb updates the FDB flight record by performing the
steps depicted in Figure 25-50. The module saves the existing FDB flight record, updates a copy
of the record, and if updated successfully, replaces the saved flight record with the updated
record.

TOMprocessingforfdb sets the flight status to active and performs validity checks on each
component of the TO message. The module verifies that the coordinates, reported ground speed,
altitude, and time fall within appropriate ranges. If not, the routine returns FALSE.

Next, TOMprocessingforfdb locates the flight position within the flight path, i.e., it finds the last
actual event flown by the aircraft. The position of the last actual event along with the flight's
deviation from the route determine whether it is possible to update the eventlist with the TO data.

It is not possible to update the eventlist when the TO flight position occurs prior to the first event
in the eventlist. This may result from a missing flight plan (e.g., the flight originated from a UZ
message). It could also occur because the flight plan and position update information are coming
from different sources and asynchronously. In most cases, the reported flight position occurs
between the first and last events.

There is a chance that the TO flight position is farther than a preset threshold limit from the
route. If this occurs when the flight is over the ocean, where the distance between adjacent events
is measured in thousands of miles, then the TO information is still usable for correction.

When TOMprocessingforfdb determines that the last actual event is impossible to identify, the
eventlist update is bypassed and the FDB entry is replaced with the updated record.

If TOMprocessingforfdb positively identifies the last actual event, it calculates the distance
between the reported flight position and the known route. If the flight position is too far away
from the route, TOMprocessingforfdb calls Updateeventlistforfarawayto to update the eventlist;
if the flight position is close enough to the route, it calls Updateeventlistfortom to update the
eventlist. If successful, TOMprocessingforfdb sends update transactions to the TDB and FTM
and replaces the FDB entry with the updated flight record. If the eventlist update is unsuccessful,
TOMprocessingforfdb returns FALSE.

ETMS System Design Document
Version 6.0

25-123

Start

Save olf FDB
records

Set flight status
“active”

Change time
Array

Send transaction
to TDB

Replace
updated evenlist

Validity check on
TO coordinates,
speed, altitude,

time

Find flight position
on the flight path
(last actual event)

TO information
replacement in the
FDB entry header

Was check
successful?

Is it
possible to

update
evenlist?

Completed
true/false?

Reported
position off

route??

Updateeventlistforfarawayto Updateeventlistfor tom

Exit TRUE

Exit FALSE

no

yes

yes

no
true

false

yes

no

 Figure 25-50. Sequential Logic for the TOMprocessingforfdb Module

ETMS System Design Document
Version 6.0

25-124

25.14.4.5.13 The Updateeventlistfortom Module

The Updateeventlistfortom module updates an eventlist (velocity, altitude, time) using
information provided by a TO message. The sequential logic for the Updateeventlistfortom
function is shown in Figure 25-51 and described below.

These terms are used in the following description:

• last actual event (also called “prior event”) −− This is the event in the event list
most recently passed by this flight. It is determined based on the flight's current
position.

• previous last actual event −− This is the most recent event in the event list for
which a TZ time (not a modeled or interpolated time) is recorded.

• correction event −− This is the event in the event list that the flight is expected to
reach next, normally the event after the last actual event.

The eventlist is updated for all events beginning with the event after the previous last actual
event and up to the last event in the list. The first step is to find a correction event, i.e., an event
which is ahead of the last actual event in the remaining flight path and belongs to an enroute
phase of the flight. It is assumed that the TO messages are received when the flight is already in
the enroute (cruising altitude) phase.

When a correction event can not be located because the flight has already entered the descent
phase, the attempt to make a time correction is canceled and this routine terminates. If a
correction event is successfully determined, the event list will be remodeled. The next step is to
identify the previous last actual event, by searching through the event list for the last event with a
time-type of TZ-time. Its time, velocity, and altitude will remain unchanged.

The flight is remodeled starting with the event following the previous last actual event. All
enroute-phase events' speeds and altitudes are set to the current reported speed and altitude, and
their estimated times are remodeled based on the new speed. The speeds of the
approach/arrival/landing phase events are not changed, but their time estimates are re-calculated.
The time-type of all of these recalculated times, from the event after the previous last actual
event to the final event, are set to modeled in the event list.

The spherical distance from the reported position to the correction event is determined, and the
new time for this event is calculated based on the reported speed. The previously modeled time is
subtracted from this new time estimate, establishing a delta time. This delta will be added to
every event over the rest of the eventlist beginning from the event after previous last actual event
to the last event in the list. The time-types of events after the previous last actual event up?the
event before the last actual event are set to interpolated; the time-type of the last actual event is
set to TZ time; all subsequent time-types remain modeled. (Only modeled times will be subject
to future recalculation.)

ETMS System Design Document
Version 6.0

25-125

Find the previous
last actual event

Exit TRUE

Start

Exit FALSE

Found?

TO or TA?

Is last
actual event in

eventlist?

Set actual pos.
time using
message

content’s time
Recalculate future

event times off
previous last actual

event using corrected
enroute velocity

Use message time
stamp to find min off

midnight pos.time

Find future “enroute
phase” event closest
to last actual event;
i.e., correction event

Find distance from
reported flight pos. to

correction event

Calculate how long it
will take to get to the
correction event from
the reported position

Find new time for
correction event,

subtract old time from
that and add this delta

time to all modeled
times in the event list

Set ground velocity
and altitude in each
future event which is
in “enroute” phase to
the current reported
speed and altitude

Set last actual event’s
time type to TZ; set
previous modeled

times to interpolated

yes

no

no

yes

TA

TO

 Figure 25-51. Sequential Logic for the Updateeventlistfortom Module

ETMS System Design Document
Version 6.0

25-126

25.14.4.5.14 The Updateeventlistforfarawayto Module

The Updateeventlistforfarawayto module updates an eventlist (velocity, altitude, and time) using
information provided by a TO message. The following describes the sequential logic for the
Updateeventlistforfarawayto function and which is illustrated in Figure 25-52.

This routine is similar to Updateeventlistfortom (Section 25.14.4.5.13 defines some of the terms
used in this section). It is called when the flight is very far off its route. When this is the case,
trying to find the last actual event and the next expected event on the route's event list is not
particularly meaningful, but it is still desirable to have an updated ETA. An assumption is made
that the flight will attempt to get back onto its scheduled route by the time its descent phase
begins, so the correction event is always assumed to be the last event of the enroute phase.

When a correction event cannot be located because the flight has already entered the descent
phase, the attempt to make a time correction is canceled and this routine terminates. If a
correction event is successfully determined, the event list will be remodeled. The next step is to
identify the previous last actual event, by searching through the event list for the last event with a
time-type of TZ time. Its time, velocity, and altitude will remain unchanged.

The flight is remodeled starting with the event following the previous last actual event. All
enroute-phase events' speeds and altitudes are set to the current reported speed and altitude, and
their estimated times are remodeled based on the new speed. The speeds of the approach/
arrival/landing phase events are not changed, but their time estimates are re-calculated. The time-
type of all of these recalculated times, from the event after the previous last actual event to the
final event, are set to “modeled” in the event list.

The spherical distance from the reported position to the correction event is determined, and the
new time for this event is calculated based on the reported speed. The previously modeled time is
subtracted from this new time estimate, establishing a delta time. This delta will be added to
every event over the rest of the event list beginning from the event after previous last actual
event to the last event in the list. Unlike time-types in Updateeventlistfortom, the time-types of
all events being remodeled will remain “modeled”. They will eventually be re-calculated and set
to “interpolated” when a TZ or TO is received from a position that is on or close to the scheduled
route.

ETMS System Design Document
Version 6.0

25-127

TO or TA?

Check last
actual event?

Exit TRUE

Exit FALSE

Start

Find the previous
last actual event

Find distance from
reported flight pos. to

correction event

Use message time
stamp to find min off
midnight pos.time

Set correction
event to the last
“enroute phase”

event

Find new time for
correction event,

subtract old time from
that and add this delta

time to all modeled
times in the event list

(leave all times as
“modeled”)

Set ground velocity
and altitude in each

futue event which is in
“enroute” phase to the

current reported
speed and altitude

Calculate how long it
will take to get to the
correction event from
the reported position

is the flight
in the en-route

phase?

Recalculate future
event times off

previous last actual
event using corrected

enroute velocity

Set actual pos.
time using
message

content’s time

no

TA

yes

TO

no

yes

Figure 25-52. Sequential Logic for the Updateeventlistforfarawayto Module

ETMS System Design Document
Version 6.0

25-128

25.14.4.5.15 The Do_AF Module
Do_AF processes two types of messages: AF (flight plan amendment) and FA (feedback). Since
FA messages are derived from a combination of data already in the FDB and information
contained in an AF message, concurrent processing makes message matching more consistent
and also eliminates the need for redundant code. The sequential logic diagram for AF/FA
messages is divided roughly in half. Figure 25-53 shows the processing for proposed messages
and for active messages. In either case, the first step is to attempt a match between the flight ID
in the message and at least one flight ID already in the database. If flight ID matching fails, the
message is discarded. If at least one flight ID match is obtained, Do_AF then examines the
message to determine what types of changes to the flight plan are being made (e.g., departure
time, route, airspeed, altitude, etc.). During this examination, Do_AF sets internal flags that will
be used later to decide how the message information will be processed.

For a proposed message, message matching begins by comparing the computer ID found in the
message with all entries whose flight ID matches the message. If the computer ID match fails,
Do_AF then checks for a match with controlled, scheduled, and active flights. Active message
matching begins by comparing the message to active flights, followed by controlled, filed, and
scheduled flights. If Do_AF finds that an active FA message matches a controlled, filed, or
scheduled flight, it deactivates any currently active flights with the same flight ID as the
message.

If the message is an AF that requests changes to the flight's route, altitude, or aircraft type,
Do_AF places information from the matching entry's flight record into the message and enqueues
a feedback message for the Feedback Relay. The Parser will reprocess the FA message using the
additional information, and return the FA message to Process Flight Messages, which will
perform the required updates to the database.

AF messages that do not require feedback message generation and all FA messages are
processed by the Replace AF/FA Information module. Figure 25-54 shows that AF messages use
a different set of processing steps than FA messages. Note that Replace AF/FA Information
discards AF and FA messages for an entry that does not have an event list.

ETMS System Design Document
Version 6.0

25-129

TO or TA?

Check last
actual event?

Exit TRUE

Exit FALSE

Start

Find the previous
last actual event

Find distance from
reported flight pos. to

correction event

Use message time
stamp to find min off

midnight pos.time

Set correction
event to the last
“enroute phase”

event

Find new time for
correction event,

subtract old time from
that and add this delta

time to all modeled
times in the event list

(leave all times as
“modeled”)

Set ground velocity
and altitude in each

futue event which is in
“enroute” phase to the

current reported
speed and altitude

Calculate how long it
will take to get to the
correction event from
the reported position

is the flight
in the en-route

phase?

Recalculate future
event times off

previous last actual
event using corrected

enroute velocity

Set actual pos.
time using
message

content’s time

no

TA

yes

TO

no

yes

Figure 25-53. Sequential Logic for the Do_AF Module

ETMS System Design Document
Version 6.0

25-130

Do
Departure Times

Match?

Do
Departure Points

Match

Any
Scheduled
Matches?

Do
Departure Points

Match?

Any
Filed

Matches?

a

b

Exit

Replace AF/FA
Flight

Information
25-54

Check For
Previous Flight

Legs

Do
Changes Require

Feedback?

Is Message
Type AF?

Send Feedback
Message To

Parser

No No

NoNoNo

No No

Yes Yes

Yes Yes

Yes

Yes Yes

EDCT Only
Message?

Do
Departure Points

Match?

Any
Controlled
Matches?

No No No

Yes Yes

Do
Departure Points

Match?

Any Active
Matches?

ExitNo No

Yes Yes

Yes

 Figure 25-53. Sequential Logic for the Do_AF Module (continued)

When Replace AF/FA Information processes an AF message, it retrieves the matching entry's
event list from the evdb map file and performs requested updates to the flight's departure time or
cruising speed. To process an FA message, Replace AF/FA Information checks to see if the flight
is active or if the field 10 contained a tailored route. If either condition is satisfied, Replace
AF/FA Information merges the entry's event list with the event list in the message. Next, it makes
any required change to the departure time.

ETMS System Design Document
Version 6.0

25-131

Begin

Exit

Exit
Matching
Entry Has

Event List?

Is Message
Type AF?

Is Entry
Active?

Speed
Change
Request?

Is Route
Tailored?

Departure
Time

Actual?

Departure
Time Change?

Log An Error

Departure
Time

Change

Place Departure
Time In Message

Even List

Copy First Event
Time From Old
Event List To

New

Merge Entry
Event List Into

Message Event
List

Replace Header
Information

Update Speeds
In Event List

Update
Departure Time

Put Old Event
List Into

Message

Replace Event
List In EVDB

Compute Flight
Times

Send Route
Information

No

No

No

No

No

No

No
No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Figure 25-54. Sequential Logic for the Replace AF/FA Information Routine

ETMS System Design Document
Version 6.0

25-132

At this point (for either message type), Replace AF/FA Information updates the information in
the flight record header and computes the flight times. Flight time computation may take one of
two different paths:

(1) For AF messages which requested a departure-time change but no speed change, a
delta time value is applied to each of the current event list values.

(2) For FA messages and all AF messages not covered by (1), the event list times are
recomputed by the ModelFlight module. Times are computed from the point of
any event list merge to the end of the event list.

After computing the flight times, Replace AF/FA Information replaces the new event list. The
update databases flag is set to true, and the TDB update type is set to replace.

25.14.4.5.16 The Do_AZ Module
Arrival (AZ) messages are processed by the Do_AZ module according to the sequential logic
diagram of Figure 25-55. If the message flight ID does not match any of the flights currently in
the database, Do_AZ adds a flight record and a single-event event list for the flight.

For messages which do match a flight ID currently in the database, Do_AZ checks all possible
flight status values in the following order: active, completed, controlled, filed, scheduled, and
completed.

The reason for the seemingly redundant check on completed flights is to allow Do_AZ to process
arrival messages for flights that were internally deactivated by the check_previous_flightlegs
routine. If the first check for completed flights fails, Do_AZ decides if the message matches
other flight status values before proceeding to label the AZ message as redundant. If a redundant
AZ message is detected, Do_AZ logs an error and discards the message.

ETMS System Design Document
Version 6.0

25-133

Begin

Exit
Exit

Do
Arrival Points

Match?

Any Active
Matches?

No No

Yes Yes

Any
Previous AZ For

This Flight?

Do
Arrival Points

Match?

Any
Controlled
Matches?

No No Yes

Yes Yes

Do
Arrival Points

Match?

Any
Controlled
Matches?

No
No

Yes Yes

Do
Arrival Points

Match?

Any
Filed

Matches?

No No

Yes Yes

Do
Arrival Times

Match?

Do
Departure &
Arrival Points

Match?

Any
Scheduled
Matches?

No No No

Yes Yes

Log An Error

Replace AZ
Flight

Information
25-57

Add AZ Flight
Information

25-56

Is Message
Active?

Log An Error
Any

Completed
Matches?

Yes

No
No

Yes

No

Yes

Figure 25-55. Sequential Logic for the Do_AZ Module

ETMS System Design Document
Version 6.0

25-134

In order to add an AZ message to the database (see Figure 25-56), Do_AZ allocates and loads a
new flight record header. It then creates a single-event event list for the flight. The update
databases flag is set to true and the TDB update type is set to add.

Exit

Begin

Load Header
Information

Add
Single-Event
Event List To

EVDB

Add Flight to
Arrival Time

Array

Figure 25-56. Sequential Logic for the Add AZ Information Routine

Do_AZ performs the logical steps depicted in Figure 25-57 to update flight information from an
arrival message. If matching flight's event list already has an arrival event, Do_AZ merges the
arrival event defined by the message with the arrival event already in the database. If no arrival
event exists for the flight, Do_AZ appends the coordination fix event from the message to the
end of the event list.

After the coordination fix has been merged or added, Do_AZ performs an interpolation of event
times, which are previous to the arrival event but which are after any events in the event list that
are already marked as proposed, actual, or interpolated. The update databases flag is set to true,
and the TDB update type is set to replace.

ETMS System Design Document
Version 6.0

25-135

Exit

Begin

Is Last
Event an Arrival

Event?

Merge Arrival
Event With Event

List

Add Arrival Event
o End of Event

List

Replace Event
List In EVDB

Yes

No

Figure 25-57. Sequential Logic for the Replace AZ Information Routine

25.14.4.5.17 The Do_RZ Module
Do_RZ processes RZ (flight cancellation) messages according to the logical sequence outlined in
Figure 25-58. Since RZ messages are designed to cancel flights currently in the database,
messages that do not match a flight ID currently in the database are discarded.

Proposed RZ messages are matched to filed, controlled, and scheduled flights, in that order.
Active RZ messages may only match active flights. If a match is found, the flight status is set to
cancelled, the update databases flag is set to true, and the TDB update type is set to delete.

ETMS System Design Document
Version 6.0

25-136

Any Filed
Matches?

Do Computer
ID’s Match?

Any
Controlled
Matches?

Do
Departure &
Arrival Points

Match?

Any
Scheduled
Matches?

Do
Departure &
Arrival Points

Match?

Do
Departure Times

Match?

Begin

Exit

Any Active
Matches?

Is Message
Proposed?

Find TDB
Entry

Replace
Active RZ

Do
Departure Points

Match?

Yes

Yes Yes Yes

YesYes

Yes Yes

Yes

Yes No

No

No
No

No

No

No

No No

No

Figure 25-58. Sequential Logic for the Do_RZ Module

25.14.4.5.18 The Do_RS Module
Do_RS processes RS (schedule cancellation) messages according to the logical flow pictured in
Figure 25-59. If Do_RS does not find a flight ID match in the database, the message is discarded.
RS messages are, by design, aimed at canceling only those flights whose current status is
scheduled. Do_RS generates an error message, if an RS message matches either a filed or active
flight. If a scheduled flight match is found, the flight status is set to cancelled, the update
databases flag is set to true, and the TDB update type is set to delete.

ETMS System Design Document
Version 6.0

25-137

Any
Filed

Matches?

Do
Departure &
Arrival Points

Match?

Yes

No No

Any
Scheduled
Matches?

Do
Departure &
Arrival Points

Match?

Yes

No No

AnyActive
Matches?

Do
Departure &
Arrival Points

Match?

Yes

No No

Exit

Begin

Log An Error

Log An Error

Update Time
Array

Yes

Yes

Yes

Figure 25-59. Sequential Logic for the Do_RS Module

25.15 Flight Database Processor Source Code Organization
The Flight Database Processor source code resides in C files under configuration management
using ClearCase

25.16 Flight Database Processor Data Structures
This section describes data structures that are used by the FDP. Included are descriptions of
structures internally used by the FDP and those used for communicating between this and other
processes.

ETMS System Design Document
Version 6.0

25-138

25.16.1 The flight_db_type Data Structure
The flight_db_type data structure is used as the format of each record in the FDB. All
information about a particular flight, except for the flight's event list, is contained in this record.
The flight_db_type is used exclusively by the FDP for updating the FDB. A more complete
description of the data structure appears in Table 25-10 .

25.16.2 The event_block_type Data Structure
The event_block_type data structure is used as the format of each record in the event-list,
mapped file part of the FDB. These records are used for storing the event lists of flights. An
event list of a particular flight is stored in one to five records, depending on the list's length. The
event_block_type data structure is a fixed length array of event record structures. The event
record structure, referred to as the erect structure, is used by both the Parser and the FDP. The
erect structure is shown in Table 25-11.

25.16.3 The fdb_ftm_interface_t Data Structure
The fdb_ftm_interface_t data structure is used by the FDP to communicate route information
about a flight to the Flight Table Manager. This route information includes fixes, waypoints, and
sectors through which the flight travels. A more detailed description of the data structure is
shown in Table .

25.16.4 The fdb_tdb_interface_t Data Structure
The fdb_tdb_interface_t data structure is used by the FDP to communicate transactions to the
Traffic Demands Database Processor. These transactions direct the Traffic Demands Database
Processor to add, replace, or delete information about a flight's events. The transaction data
structure is a variable length array of characters. Data items of various types (integers,
characters, Pascal records) are placed into the array. The position of the item in the array helps
determine what the data represents. The contents of the first field (the transaction letter) also
determines what data appears in what position in the array. The fields which make up the
transaction are shown in Table 25-12. Tables 25-13 and 25-14 describe the data structures used
for the short event list.

ETMS System Design Document
Version 6.0

25-139

Flight_db_type
Library Name: gtp_openlib Element Name: store_flushed_flts.h
Purpose: to hold information about a particular flight

Data Item Definition Unit/Format Var. Type
deleted Is this slot available for

reuse?
-- boolean

tdbentry Does this flight exist in
the TDB?

-- boolean

tdb_num_events Number of events in the
TDB for this flight

_ short

id_of_flight Flight identification 1 or 3 letters followed by
numbers.

string7

comp_id Computer identification
for a flight

3 numbers string3

ftm_flight_num Date/time stamp for
FTM and TDB transac-
tions

Packed julian date and
time in minutes

short

ftm_version_num Not currently used - short
actype NAS abbreviation for

aircraft type
Combination of letters
and numbers

string4

user_category Category of user An enumerated type:
commercial, military,
etc

usercat_t

flightreg_class Flight regulations ob-
served by the flight

An enumerated type:
VFR, IFR_CAT1, etc.

FLIGHT_REGS_T

ac_general_class General type of aircraft An enumerated type:
land, helicopter, etc.

actype_t

ac_cat_class Specific type of aircraft An enumerated type: ci-
vilian, jet, single pis-
ton_prop, etc

ac_cat_t

ac_weight_class Aircraft weight class An enumerated type:
small, large, etc.

ac_weight_t

geographical _flags Geographical filter
flags

future use short

fstatus Status of the flight An enumerated type:
scheduled, filed, etc.

status_of_flight

last_msg_time Time of last NAS mes-
sage receipt.

Year, month, day, hour,
and minute

CALCLOCK

Table 25-10. Flight_db_type Data Structure

ETMS System Design Document
Version 6.0

25-140

Table 25-10. Flight_db_type Data Structure (continued)

Flight_db_type (continued)
Data Item Definition Unit/Format Var. Type

message_history History of flight’s NAS
messages

Packed format contain-
ing counts for each
message type.

short

fdb_indicator 16-bit flag field used in-
ternallt to the FDB.

Packed format, one bit
for each of up to 16
flags

short

current_ctr The ARTCC through
which the flight is
currently flying

One letter code repre-
senting the ARTCC.

char

route_text Route of flight ASCII field 10 string 256

departure_sub Subscript into de-
parture time array

A number from 0 to
191

short

Arrival_sub Subscript into appropri-
ate arrival time array

A number from 0 to
191

short

profile_info Record containing val-
ues for flight modeling
routinea

Indices and distances
to define aircraft dy-
namics

profile_rec_t

tz_indicator Flags for TZ processing 16 one-bit flags, keep
track of past TZ proces-
sing

short

tz-message_history Number of TZ mes-
sages received

A number short

to_message_history Number of TA mes-
sages received

A number short

ta_message_history Number of TA mes-
sages received

A number short

tz_delay_indicator TZ delay information 16 bits short
tz_time Time when last TZ was

received
Year, month, day, hour,
and minute.

CALCLOCK

ta_time Time when last TA was
received.

Year, month, day, hour,
and minute

CALCLOCK

oceanic_dist Supports TO proces-
sing

Distance value short

connection_event Supports TO proces-
sing

Event number short

last_act_lat Last actual latitude Radians times 10000 short
last_act_lon Last actual longitude Radians times 10000 short
lat_pos_predicted Predicted latitude Radians times 10000 short

ETMS System Design Document
Version 6.0

25-141

Table 25-10. Flight_db_type Data Structure (continued)

Flight_db_type (continued)
Data Item Definition Unit/Format Var. Type

last_actual_event Event number for
plane’s last reported
position

Number between 0 and
250

short

last_actual_event Event number for
plane’s last reported
position

Number between 0 and
250

short

lon_pos_predicted Predicted longitude Radians times 10000 short
next_goal_event Event number for

plane’s last reported
position

Number between) and
250

short

fl_measured_heading Flight heading mea-
sured between TZ mes-
sages.

Nadian times 10000 short

total_distance Total distance covered
by the event list.

Nautical miles short

total_dist_strine Total straight line dis-
tance flown.

Nautical miles short

total_dist_passed Total distance flown so
far

Nautical miles short

smooth_deviation Smoothed deviation
from route

Nautical miles short

smooth_dev_slope Smoothed slope of
deviation value

Nautical miles per min-
ute.

short

time_smooth_made Time of last reevalua-
tion in TZ processing

Year, month, day, hour,
minute

CALCLOCK

proposed_speed Requested air speed Nautical miles per hour short

reported_speed Last reported ground
speed

Nautical miles per hour short

proposed_alt1 Requested altitude Hundreds of feet short

reported_alt1 Last reported altitude Hundreds of feet short

reported_altitude_type Type of altitude Transitional or mode C? char
departure_ap Airport of flight’s origin Combination of 3 or 4

letters and numbers
string4

arrival_ap Destination airport of
flight

Combination of 3 or 4
letters and numbers

string4

ground_time Predicated number of
minutes for flight to taxi

Minutes short

dep_pushback Predicted value for de-
parture queue delay

Minutes short

ETMS System Design Document
Version 6.0

25-142

Table 25-10. Flight_db_type Data Structure (continued)

Flight_db_type (continued)
Data Item Definition Unit/Format Var. Type

departure_date Julian date for flight’s
NAS messages

Number of days since
January 1, 1980.

unsigned short

proposed_dep_time Flight’s proposed de-
parture (from FZ)

Minutes from midnight short

actual_dep_time Flight’s actual depar-
ture time (from DZ)

Minutes from midnight short

sched_dep_time Flight’s scheduled de-
parture time (from FS)

Minutes from midnight short

control_dep_time Flight’s controlled de-
parture time (from
EDCT)

Minutes from midnight short

first_event_time Time from first event in
the event list

Minutes from midnight short

orig_dep_time Latest proposed or
scheduled dep time be-
fore control

Minutes from midnight short

proposed_arr_time Flight proposed arrival
time (from FZ)

Minute from midnight short

init_arr_time Initial predictton for
flight’s arrival time

Minutes from midnight short

curr_arr_time Current prediction for
flight’s arrival time

Minutes from midnight short

sched_arr_time Flight’s scheduled time
of arrival (from FS)

Minutes from midnight short

orig_arr_time Latest proposed or
scheduled arr time be-
fore control

Minutes from midnight short

timestamp_offset Time between time in
DZ message and time
stamp

Seconds short

ground_time_method Mode used in ground
time determination

a=aircraft, c=category
t=controlled, d=default

char

dept_center Departure center code Character or symbol char

arr_center Arrival Center code Character or symbol char
controllable Indicated flight’s ability

to accept control pro-
grams

_ Boolean

strategy_flags Flags for strategy pro-
cessing

Not currently used short

cta_list Events describing
controlled times of
arrival

two events array of short_erect

ETMS System Design Document
Version 6.0

25-143

Table 25-10. Flight_db_type Data Structure (continued)

Flight_db_type (continued)
Data Item Definition Unit/Format Var. Type

arrival_fix_event Event to describe the
flight’s arrival fix

Location and time of
arrival fix

short_erect

ac_rmk_bitflags Flags for field 11 key-
word

16-bit flags short

numb_of_events Size of flight’s event list A number from 0 to
MAXEVENTS

short

elist_offset Offset into EVDB for
this flight

Number of bytes from
beginning of EVDB
map file

INT32

last_pos_message_to Indicated whether last
pos message was a
TO

_ Boolean

proposed_altitude_type Type of altitude: Block,
OTP, AVR, etc.

a character char

proposed_alt2 Request altitude 2 Hundreds of feet short

reported_alt2 Last reported altitude 2 Hundreds of feet short
num_aircraft Number of aircraft in

formation
From field 3 char

ac_eqp_prefix aircraft equipment pre-
fix

From field 3 char

ac_eqp_suffix aircraft equipment suffix From field 3 char

az_source Source indicator of
arrival message

“A” = ARTS
“E” = Host

char

new_fid_flag Flag indicating a flight
ID change

flag Boolean

tz_proc_flag Indicator of TZ proces-
sing method

char

ETMS System Design Document
Version 6.0

25-144

Table 25-11. erect Data Structure

erect (event record type)

Library Name: ttm_openlib Element Name: event.h

Purpose: To contain information about an event. The contents and type of each data item
is shown here.

Field Name: time_index Field Type: INT32

 Data Item Definition Unit/Range Which Bits?

 event kind Is this event an arrival or
 departure?

 0 - 2 31 - 30

 phase
 In which phase of the flight
does the event occur?

 Enumerated type from TAKEOFF
to LANDING (0-6)

 29 - 27

 time At what time does this
event occur?

 Minutes from midnight 26 - 15

 TDB time type Is this an actual or
predicted event?

 1 means actual, 0 means
predicted

 14

 time type Desc. the type of the event
time (actual, predicted).

 Constants defining time types
range from 0 - 7

 13 - 11

 unused -- -- 10 - 0

Field Name: del_alt-vel Field Type: INT32

 Data Item Definition Unit/Range Which Bits?

 delay Any filed airborne delay. Minutes 31 – 22

 altitude The altitude of this flight at
this event.

 Flight level in hundreds of feet 21 – 12

 velocity The velocity of this flight at
this event.

 Nautical miles per minute 11-0

Field Name: distance Field Type: short

 Data Item Definition Unit/Range Which Bits?

 waypoint flag
 Is this position of this event
a waypoint of the flight?

 1 means yes, 0 no 15

 unused -- -- 14

 distance The distance this flight has
flown from the last event.

 Nautical miles 13 - 0

ETMS System Design Document
Version 6.0

25-145

Table 25-11. erect Data Structures (continued)

erect (continued)

Field Name: heading_type Field Type: short

 Data Item Definition Unit/Range Which Bits?

 monitor flag
 Is the element of this event
monitored 1 means yes; 0 means no 15

 heading
 Heading of this flight at
this event

 0 – 359 degrees 14 – 6

 element type
 At what type of element
does this event occur?

 These types currently range

from 0 to 18
 5 - 0

Field Name: element index Field Type: short

 Data Item Definition Unit/Range Which Bits?

 element_index
 Element’s index in the

grid database
 0 – 65535 15 - 0

Field Name: latitude Field Type: short

 Data Item Definition Unit/Range Which Bits?

 latitude
 Latitude of the position of
this event radians time 1000 15 - 0

Field Name: longitude Field Type: short

 Data Item Definition Unit/Range Which Bits?

 longitude
 Longitude of the position

of the event
 radians times 1000 15 - 0

ETMS System Design Document
Version 6.0

25-146

Table 25-12. Logical structure for the FDB to TDB Interface

FDB—TDB Communications Interface

Library Name: traffic_openlib

Element Name: fdbtdb.interface.h

Purpose:
This variable structure describes the transaction format used to
pass information to the TDB. The FDB sends flight update (add,
replace,delete), time, and FA Flight Request transactions to the
TDB.

Data Item Definition Unit/Format Range Var. Type/Bits

transaction type
Letter identifying the transac-
tion type. * char

 For Time transactions:

filler Filler character to ensure that
next field begins on even byte.

char
current time Current Greenwich mean time. System type CALCLOCK

 For Flight transactions:

flight status char
Character of flag bits represent-
ing flight status information.

Flags bits. 5 are
currently used.
+

char

flight id
Set of characters indentifying
this flight.

1 to 3 letters,
then numbers.

7 characters

computer id
Internal computer ID of the
flight.

3 numbers.
3 characters

flight number
A unique numeric flight identifi-
er to be sent to the TDB.

0 – 65535 unassigned short

filler Filler for alignment short
 For Deletes:

old event list List of events currently in the
TDB that need to be deleted.

Variable length
event list.

See following
Table.

evenlist_t

 For Adds, Replaces::

tdb header record Header record for future use. tdb_headerinfo_
rec_t

 For Adds:
new event list List of flight events to be added

to the TDB.
variable length
events list.

See following
Table.

eventlist_t

 For Replaces:
old event list List of flight events to be de-

leted from the TDB.
variable length
event list.

See following
Table.

eventlist_t

new even list List of flight events for the same
flight to be added to the TDB.

variable length
event list.

See following
Table.

eventlist_t

 For FA Flight Request transactions:

filler Filler character to ensure that
next field begins on even byte

char

nas_time Element index for airport short
start_time Request start time CALTIME
end_time Request end time CALTIME

 + bit flight status * type
 0 = old event list active ‘A’ = Add Flight
 1 = new event list active ‘D’ = Delete Flight
 2 = old event list scheduled ‘R’ = Replace Flight
 3 = new event list scheduled ‘T’ = Time Transaction
 4 = flight is non-commercial ‘L’ = FA List Request

ETMS System Design Document
Version 6.0

25-147

Table 25-13. eventlist_t Data Structure

eventlist_t

Library Name: traffic_openlib

Element Name: short_event_list.h

Purpose:

To hold a single eventlist. This list supports FDB-TDB communi-
cations.

Data Item Definition Unit/Format Range Var. Type/Bits

jdate
Julian departure date of the flight # of days since

January 1, 1980 0 – 65535 unsigned short

length
The number of events in the fol-
lowing list 0 – 300 short

list
The list of events making up the
flight’s route

Array of Short
erect records

0 – 300 elements ev_tdb_array

ETMS System Design Document
Version 6.0

25-148

Table 25-14. eventlist_t Data Structure

short_erect

Library Name: tmm_openlib

Element Name: short_event.h

Purpose:
To contain information about an event. This structure is used for
FDB-TDB communications. It is also a vehicle to pass arrival fix
information from the Parser to the FDB.

Data Item Definition Unit/Format Definition Var. Type/Bits

time_index Packed structure that contains first part
of event data. INT32

 For Airports:

event kind Item that indicated whether the event is
arrival or departure

0 = departure
1 = arrival 0 – 1 31 -30

 For Fixes:

event kind
Item that indicates altitude of fix
crossing

0 = low , 1=
high
2 = superhigh

0 – 2 31 - 30

 For Secotrs:

event kind Item that indicates whether this event is
an entry or exit

0 = exit
1 = entry 0 – 1 31 - 30

phase Flight phase at which this event occurs Enumerated
type 0 – 7 29 - 27

time Time at which this event oc-
curs

Minutes after
midnight 0 – 2879 26 -15

TDB time type Item that indicated whether this event is
actual or predicted

0 = predicted
1 = actual 0 – 1 14

FDB time type Item that indicates method usedto
determine time

Integer
constant

0 – 7 13 - 11

unused These 11 bits are currently un-
used

10 - 0

heading_type Packed structure that contains the rest
of the event data INT32

monitor flag Flag that tells whether this event is
monitored for alerts

0 = no, 1 = yes 0 – 1 31

heading Heading of this flight at this
event

Degrees 0 – 359 30 - 22

element type Type of element at which this
event occurs

Integer
constant

0 – 18 21 - 16

element index
Element’s index in the grid da-
tabase

Grid database
in-
dex

0 – 65535 15 - 0

25.16.5 FDB_FTM Data Structure
The Fdb_ftm data structure is composed of seven separate structures (see Tables 25–15 through
25–27). These structures are defined as either fixed or variable. Fixed structures are of a set
length whereas variable structures are composed of one part of a set length and one part of
changeable length. Of the seven data structures that follow, the Block data structure and the
Route data structure are variable. All others are fixed.
An eighth structure, Block_altitude data structure, is defined in ftm_tsc_interface (see Section
18).

ETMS System Design Document
Version 6.0

25-149

Table 25-15. TTM-FTM Block Transaction Data Structure

TTM-FTM block Transaction

Library Name: fdb_openlib

Element Name: fdbftm_pack.openlib

Purpose:
Hold a complete block of data for transfer from the FDB to client
FTMs

Data Item Definition Unit/Format Range Var. Type/Bits
flight_indx Internal identifer. INT32

tstamp Time of message Seconds after
midnight

0-86399 INT32

fstat_spd_alt Packed flight status, speed &
altitude

See below INT32

sizes Packed number of waypoint,
sector, fixes, airways ,& centers

See below INT32

julian_date Departure date Number of days
since 1/1/1980

short

std Scheduled departure time Minutes after
midnight

0-1439 short

sta Scheduled arrival time Minutes after
midnight

0-1439 short

ptd Proposed departure time Minutes after
midnight

0-1439 short

pda Proposed arrival time Minutes after
midnight

0-1439 short

td Departure time Minutes after
miidnight

0-1439 short

ta Arrival time Minutes after
midnight

0-1439 short

etd Estimated departure time Minutes after
midnight

0-1439 short

eta Estimated arrival time Minutes after
midnight

0-1439 short

ctd Controlled departure time Minutes after
midnight

0-1439 short

cta Controlled arrival time Minutes after
midnight

0-1439 short

otd Original gate time of departure Minutes after
midnight

0-1439 short

ota Original gate time of arrival Minutes after
midnight

0-1439 short

ETMS System Design Document
Version 6.0

25-150

Table 25-15. TTM-FTM Block Transaction Data Structure (continued)

TTM-FTM block Transaction (continued)

Library Name: fdb_openlib

Element Name: fdbftm_pack.h

Purpose: Hold
a complete block of data for transfer from the FDB to client FTMs

Data Item Definition Unit/Format Range Var. Type/Bits

lat
Last reported latitude Minutes of arc

-32768 –5400 short

lon
Last reported longitude Minutes of arc

32768 –10800 short

nxt_lat
Latitude of the next event Minutes of arc

-32768 –5400 short

nxt_lon
Longitude of the next event Minutes of arc

-32768 –10800 short

seq_no
Sequence number for batch re-
quests

short

ete Estimated time enroute from
current position

 Minutes after
midnight

0-1439 short

arr_fix_time Estimated time at arrival fix Minutes after
midnight

0-1439 short

etime Last message time Minutes after
midnight

0-1439 short

rte_size Number of characters in route 0-1439 short

co_addr FTM coprocess See net$_ad_
dress

NET_ADDRESS_T

flight_id
aircraft identifie.r 1 to 3 letters

and up to 4
numbers

string7

arr_fix Arrival fix 0-1439 string6

dept_aprt Airport of origin 3 to 5 letters &
numbers

string5

arr_aprt Destination airport 3 to 5 letters &
numbers

string5

acft_type Type of aircraft unkn, land, heli,
amph, sea

string4

dept_ctr Departure center code See ARTCC
cen- ter codes

0-1439 char

arr_ctr Arrival center codes See ARTCC
cen- ter codes

char

classes Packed waypoint flag & physi-
cal, user, and weight class

See below char

altitude _type Either trasitioning or cruising
mode

C,T char

num_type Number of aircraft in formation From field 3 char

ac_eqp_prefix Aircraft equipment prefix From field 3
char

ac_eqp_prefix Aircraft equipment suffix See below char

az_source Source indicator of arrival
message

A = ARTS
E = Host

A, E char

ETMS System Design Document
Version 6.0

25-151

Table 25-15. TTM-FTM Block Transaction Data Structure (continued)

TTM-FTM block Transaction (continued)

Library Name: fdb_openlib

Element Name: fdbftm_pack.h

Purpose:
Hold a complete block of data for transfer from the FDB to client
FTMs

Data Item Definition Unit/Format Range Var. Type/Bits

ac_rmk_bitflags Flags for field 11 keywords 16 bitflags 0.1 short

geographical_flags Flags for suture use unused short

pad Space holder to keep structure
an even size

char

rte_txt String containing wypts,sctrs,
arwys,fixes,ctr, and field 10

tot_route_t. See
ftm tsc interface

up to 1466 char char

Note: The above data structure is a variable data structure. The variable portion is rte_txt.
Everything prior to rte_txt is fixed length.

ETMS System Design Document
Version 6.0

25-152

Table 25-16. TTM-FTM Route Transaction Data Structure

TTM-FTM Route Transaction

Library Name: fdb_openlib

Element Name: fdbftm_pack.h

Purpose:
Hold route data for transfer from FDB to client FTMs

Data Item Definition Unit/Format Range Var. Type/Bits

flight_indx Internal identifer. INT32

tstamp Time of message Seconds after
midnight

0-86399 INT32

fstat_spd_alt Packed flight status, speed &
altitude

See below INT32

size Packed number of waypoints,
sector, fixes, airways & centers

See below INT32

julian_date Departure date Number of days
since 1/1/1980

short

etd Estimated departure time Minutes after
midnight

0-1439 short

eta
Estimated arrival time Minutes after

midnight
0-1439 short

td
Departure time Minutes after

midnight
0-1439 short

ta
Arrival time Minutes after

midnight
0-1439 short

nxt_lat
Latitude of the next event Minutes of arc -32768 –

5400
short

nxt_lon
Longitude of the next event Minutes of arc -32768 –

10800
short

arr_fix_time
Estimated time at arrival fix Minutes after

midnight
0-1439 short

rte_size
Number of characters in route

0-1466 short

flight_id
Aircraft ASCII indentifier 1 or 3 letters

and up to 4
numbers

string7

arr_fix
Arrival fix

string6

dept_aprt
Airport of origin 3 to 5 letters &

numbers
string5

arr_aprt
Destination airport 3 to 5 letters &

numbers string5

acft_type
Type of aircraft Land, copter,

etc
unkn, land,
heli, amph,

sea
string4

srce
Source NAS message type See below F,U,A,S,Y

char

ETMS System Design Document
Version 6.0

25-153

Table 25-16. TTM-FTM Route Transaction Data Structure (continued)

TTM-FTM Route Transaction (continued)

Library Name: fdb_openlib

Element Name: fdbftm_pack.h

Purpose:
Hold route data for transfer from FDB to client FTMs

Data Item Definition Unit/Format Range Var. Type/Bits

dept_arr_flgs
Packed time types of depar- ture
and arrival

See below
char

dept_ctr
Departure center code See ARTCC cen-

ter codes
char

arr_ctr
Arrival center code See ARTCC cen-

ter codes
char

classes
Packed waypoint flag & physi- cal,
user, and weight class

See below
char

altitude_type
Either transitioning or cruising
mode

char

num_aircraft
Number of aircraft in formation from field 3

char

ac_eqp_prefix
Aircraft equipment prefix From field 3

char

ac_eqp_suffix
Aircraft equipment suffix See below

char

ac_rmk_bittflags
Flags for field 11 keywords 16 bittflags

0.1 short

geographical_flags
Flags for future use unused

short

pad
Space holder to keep structure
and even size

char

rte_txt
String containing wypts, sctrs,
arwys, fixes, ctrs, and field 10

tot_rounte_t See
ftm tsc interface

up to 1466
char

char

Note: The above data structure is a variable data structure. The variable portion is rte_txt.
Everything prior to rte_txt is fixed length.

The srce field can have one of the following values:

F=FZ

U=UZ

A=AF

S=FS

Y=FY

ETMS System Design Document
Version 6.0

25-154

Table 25-17. TTM-FTM Recovery Transaction Data Structure

TTM-FTM Recovery Transaction

Library Name: fdb_openlib

Element Name: fdbftm_pack.h

Purpose:
Hold recovery data for transfer from FDB to client FTMs

Data Item Definition Unit/Format Range Var. Type/Bits

flight_indx
Internal identifer.

INT32

tstamp
Time of message Seconds after

midnight
0-86399 INT32

fstat_spd_alt
Packed flight status, speed &
altitude

See below
INT32

size
Packed number of waypoints,
sector, fixes, airways & centers

See below
INT32

julian_date
Departure date Number of

days since
1/1/1980

short

lat
Last reported latitude Minutes of arc

-32768 –5400 short

lon
Last reported longitude Minutes of arc

-32768 –5400 short

nxt_lat
Latitude of the next event Minutes of arc

-32768 –5400 short

nxt_lon
Longitude of the next event Minutes of arc

-32768 –5400 short

etd
Estimated departure time Minutes after

midnight
0-1439 short

eta
Estimated arrival time Minutes after

midnight 0-1439 short

ctd
Controlled departure time Minutes after

midnight
0-1439 short

cta
Controlled arrival time Minutes after

midnight
0-1439 short

otd
Original gate time of depar-
ture

Minutes after
midnight 0-1439 short

ota
Original gate time of arrival Minutes after

midnight
0-1439 short

etime
Last message time Minutes after

midnight
0-1439 short

ete
Estimated time enroute from
current position

Minutes after
midnight 0-1439 short

arr_fix_time
Estimated time at arrival fix Minutes after

midnight
0-1439 short

flight_id
Aircraft ASCII indentifier 1 or 3 letters

and up to 4
numbers

string7

arr_fix
Arrival fix

string6

dept_aprt
Airport of origin 3 to 5 letters &

numbers string5

arr_aprt
Destination airport 3 to 5 letters &

numbers
string5

acft_type
Type of aircraft Land, copter,

etc
unkn, land,

heli, amph, sea
string4

ETMS System Design Document
Version 6.0

25-155

Table 25-17. TTM-FTM Recovery Transaction Data Structure (continued)

TTM-FTM Recovery Transaction (continued)

Library Name: fdb_openlib

Element Name: fdbftm_pack.h

Purpose:
Hold recovery data for transfer from FDB to client FTMs

Data Item Definition Unit/Format Range Var. Type/Bits

dept_ctr
Departure center code See ARTCC cen-

ter codes
char

arr_ctr
Arrival center code See ARTCC cen-

ter codes
char

classes
Packed waypoint flag & physi- cal,
user, and weight class

See below
char

altitude_type
Either transitioning or cruising
mode

char

num_aircraft
Number of aircraft in formation from field 3

char

ac_eqp_prefix
Aircraft equipment prefix From field 3

char

ac_eqp_suffix
Aircraft equipment suffix See below

char

az_source
Source indicator of arrival mes-
sage

A=ARTS
E=Host

A<E char

ac_rmk_bittflags
Flags for field 11 keywords 16 bittflags

0.1 short

geographical_flags
Flags for future use unused

short

pad
Space holder to keep structure
and even size

char

ETMS System Design Document
Version 6.0

25-156

Table 25-18. TTM-FTM Cancel Transaction Data Structure

TTM-FTM Cancel Transaction

Library Name: fdb_openlib

Element Name: fdbftm_pack.h

Purpose:
Hold cancellation data for transfer from FDB to client FTMs

Data Item Definition Unit/Format Range Var. Type/Bits

flight_indx
Internal identifer.

INT32

tstamp
Time of message Seconds after

midnight
0-86399 INT32

julian_date
Departure date Number of days

since 1/1/1980
short

flight_id
Aircraft indetifer 1 or 3 letters and

up to 4 numbers
string7

srce
Source NAS message type See below

R,Z,C,X,H char

geographical_flags
Flags for future use unused

short

The srce field can have one of the following values:

R=RS

Z=RZ

C=RY

X=SI CANCEL

H=CONTROL CANCEL

ETMS System Design Document
Version 6.0

25-157

Table 25-19. TTM-FTM Position Transaction Data Structure

TTM-FTM Position Transaction

Library Name: fdb_openlib

Element Name: fdbftm_pack.h

Purpose:
Hold position data for transfer from FDB to client FTMs

Data Item Definition Unit/Format Range Var. Type/Bits

flight_indx
Internal identifer.

INT32

tstamp
Time of message Seconds after

midnight
0-86399 INT32

spd_alt
Packed speed & altitude See below

INT32

julian_date
Departure date Number of days

since 1/1/1980
short

lat
Last reported latitude Minutes of arc

-32768 –5400 short

lon
Last reported longitude Minutes of arc

-32768 –10800 short

nxt_lat
Latitude of the next event Minutes of arc

-32768 –5400 short

nxt_lon
Longitude of the next event Minutes of arc

-32768 –10800 short

lat_ii
Latitude from 2nd event in NAS
message

Minutes of arc
-32768 –5400 short

lon_ii
Longitude from 2nd event in NAS
message

Minutes of arc.
32768 –10800 short

lat_iii
Latitude from 3 rd event in NAS
message

Minutes of arc
-32768 –5400 short

lon_iii
Longitude from 3 rd event in NAS
message

Minutes of arc
-32768 –10800 short

eta
Estimated arrival time Minutes after

midnight
0-1439 short

etime
Last message time Minutes after

midnight
0-1439 short

etime_ii
Time of 2nd event in NAS mes-
sage

Minutes after
midnight

0-1439 short

etime_iii
Time of 3 rd event in NAS mes-
sage

Minutes after
midnight

0-1439 short

flight_id
Aircraft ASCII indentifier 1 or 3 letters

and up to 4
numbers

string7

dept_aprt
Airport of origin 3 to 5 letters &

numbers
string5

arr_aprt
Destination airport 3 to 5 letters &

numbers
string5

srce
Source NAS message type o=TO, W=TA

O,W char

ETMS System Design Document
Version 6.0

25-158

Table 25-19. TTM-FTM Position Transaction Data Structure (continued)

TTM-FTM Position Transaction (continued)

Library Name: fdb_openlib

Element Name: fdbftm_pack.h

Purpose:
Hold position data for transfer from FDB to client FTMs

Data Item Definition Unit/Format Range Var. Type/Bits

wypt_flag
Ghosting flag 0 =Ghost to

waypoint
0-1 char

altitude_type
Either transitioning or cruising
mode

C,T char

arr_fix_time
Estimated time at arrival fix Minutes after

midnight
0-1439 short

geographical_flag
Flags for future use unused

unused short

ETMS System Design Document
Version 6.0

25-159

Table 25-20. TTM-FTM Time Transaction Data Structure

TTM-FTM Time Transaction

Library Name: fdb_openlib

Element Name: fdbftm_pack.h

Purpose:
Hold time data for transfer from FDB to client FTMs

Data Item Definition Unit/Format Range Var. Type/Bits

flight_indx Internal identifer. INT32

tstamp Time of message Seconds after
midnight

0-86399 INT32

julian_date Departure date Number of days
since 1/1/1980

short

etd Estimated departure time Minutes after
midnight

0-1439 short

eta
Estimated arrival time Minutes after

midnight
0-1439 short

td
Departure time Minutes after

midnight 0-1439 short

ta
Arrival time Minutes after

midnight
0-1439 short

flight_id
Aircraft ASCII indentifier 1 or 3 letters and

up to 4 numbers
string7

dept_aprt
Airport of origin 3 to 5 letters &

numbers string5

arr_aprt
Destination airport 3 to 5 letters &

numbers
string5

acft_type
Type of aircraft Land, copter, etc unkn, land,

heli, amph, sea
string4

dept_arr_flgs
Packed waypoint flag & physi-
cal, user, and weight class

See below
char

srce
Source NAS message type See below

D,L,E,B,H char

classes
Packed waypoint flag & physi-
cal, user, and weight class

See below
char

num_aircraft
Number of aircraft in formation From field 3

char

ac_eqp_prefix
Aircraft equipment prefix From field 3

char

ac_eqp_suffix
Aircraft equipment suffix See below

char

ac_rmk_bitflags
Flags for field 11 keywords 16 bitflags

0.1 char

geographical_flags
Flags for future use unused

char

pad
Space holder to keep structure
an even size

char

ETMS System Design Document
Version 6.0

25-160

The srce field can have one of the following values.

D=DZ

L=AZ

E=EDCT

B=5 SETBACK

H=CONTROL CANCEL

Table 25-21. TTM-FTM TZ Transaction Data Structure

TTM-FTM TZ Transaction

Library Name: fdb_openlib

Element Name: fdbftm_pack.h

Purpose:
Hold TZ data for transfer from FDB to client FTMs

Data Item Definition Unit/Format Range Var. Type/Bits

flight_indx
Internal identifer.

INT32

tstamp
Time of message Seconds after

midnight 0-86399 INT32

ctrt_spd_alt
Packed center of origin of mes-
sage, speed, & altitude

See below
INT32

julian_date
Departure date Number of days

since 1/1/1980
short

lat
Last reported latitude Minutes of arc

-32768 –5400 short

lon
Last reported longitude Minutes of arc

-32768 –5400 short

nxt_lat
Latitude of the next event Minutes of arc

-32768 –5400 short

nxt_lon
Longitude of the next event Minutes of arc

-32768 –5400 short

eta
Estimated arrival time Minutes after

midnight
0-1439 short

etime
Last message time Minutes after

midnight
0-1439 short

flight_id
Aircraft identifier 1 or 3 letters and

up to 4 numbers string7

wypt_flag
Ghosting flag 0=Ghost to

waypoint 0-1
char/Bit 7
(Bits6…0
Unused)

altitude_type
Either transitioning or cruising
mode

C,T char

arr_fix_time
Estimated time at arrival fix minutes after

midnight
0-1439 short

geographical_flags
Flags for suture use unused

unused short

pad
Space holder to keep structure
an even size

char

ETMS System Design Document
Version 6.0

25-161

Table 25-22. fsatat_spd_alt Data Substructure

fatat_spd_alt

Library Name: fdb_openlib

Element Name: fdbftm_pack.h

Purpose:
Packed flight status, speed, and altitude

Data Item Definition Unit/Format Range Var. Type/Bits

unused 31 – 28

flight_status
Current state of flight See below N,S,F,A,R,C,D,T,

X,E
27 24

unused 23 – 22

altitude
Flight’s altitude Hundreds of

feet
21 –12

speed
Flight’s speed Nautical miles

per hour
11 - 0

The flight_status field can have one of the following values:

N = None

S = Scheduled

F = Filed

A = Active

R = Ascending

C = Cruising

D = Descending

T = Completed

X = Cancelled

E = Error

ETMS System Design Document
Version 6.0

25-162

Table 25-23. sizes Data Substructure

sizes

Library Name: fdb_openlib

Element Name: fdbftm_pack.h

Purpose:
Packed number of waypoints ,sectors,fixes, airways, & centers

Data Item Definition Unit/Format Range Var. Type/Bits

unused 31 – 29

waypoints
Number of characters in way-
points list

0 – 70 28 – 22

sectors
Number of characters in sec-
tors list

0 – 50 21 –16

fixes
Number of characters in fixes
list

0 – 50 15 – 10

airways
Number of characters in air-
ways list

0 – 50 9 – 4

centers
Number of characters in cen-
ters list

0 – 10 3 - 0

ETMS System Design Document
Version 6.0

25-163

Table 25-24. classes Data Substructure

classes

Library Name: fdb_openlib

Element Name: fdbftm_pack.h

Purpose:
Packed waypoint flag & physical, user, and weight class

Data Item Definition Unit/Format Range Var. Type/Bits

waypoint
Ghosting flag 0 = Ghost to

waypoint
0 – 1 7

physical_class
Aircraft physical class See below

1 – 4 6 – 5

user_class
Aircraft user class See below

0 – 5 4 – 2

weight_class
Aircraft weight class Small, Large,

Heavy
1 – 3 1 - 0

The physical_class field can have one of the following values:

1=Piston

2=Turbo

3=Jet

4=Helicopter

The user_class field can have one of the following values:

0=Other

1=Air Taxi

2=Cargo

3=Commercial

4=General Aviation

5=Military

ETMS System Design Document
Version 6.0

25-164

Table 25-25. dept_arr_flgs Data Substructure

dept_arr_figs

Library Name: fdb_openlib

Element Name: fdbftm_pack.h

Purpose:
Packed flags denoting whether time is estimated or actual

Data Item Definition Unit/Format Range Var. Type/Bits

departure_flag
Specifies derivation or depar-
ture time

See below
1 – 5 7 – 4

arrival_flag
Specifies derivation of arrival
time

See below
1 – 5 3 - 0

The flag values must be one of the following:

1=actual

2=estimated

3=controlled

4=proposed

5=scheduled

Table 25-26. spd_alt Data Substructure

spd_alt

Library Name: fdb_openlib

Element Name: fdbftm_pack.h

Purpose:
Packed speed and altitude

Data Item Definition Unit/Format Range Var. Type/Bits

unused 31 – 22

altitude
Flight altitude Hundreds of

feet
21 – 12

speed
Flight speed Nautical miles

per hour 11 - 0

ETMS System Design Document
Version 6.0

25-165

Table 25-27. ctr_spd_alt Data Substructure

spd_alt

Library Name: fdb_openlib

Element Name: fdbftm_pack.h

Purpose:
Packed center of origin, speed and altitude

Data Item Definition Unit/Format Range Var. Type/Bits

center
Center of origin of message See ARTCC cen-

ter codes
31 - 24

unused 23 – 22

altitude
Flight altitude Hundreds of feet

21 – 12

speed
Flight speed Nautical miles

per hour
11 - 0

